|
import json |
|
import os |
|
import tarfile |
|
import zipfile |
|
from pathlib import Path |
|
from shutil import copyfile, rmtree |
|
from typing import Dict, List, Tuple |
|
|
|
import fsspec |
|
import requests |
|
from tqdm import tqdm |
|
|
|
from TTS.config import load_config |
|
from TTS.utils.generic_utils import get_user_data_dir |
|
|
|
LICENSE_URLS = { |
|
"cc by-nc-nd 4.0": "https://creativecommons.org/licenses/by-nc-nd/4.0/", |
|
"mpl": "https://www.mozilla.org/en-US/MPL/2.0/", |
|
"mpl2": "https://www.mozilla.org/en-US/MPL/2.0/", |
|
"mpl 2.0": "https://www.mozilla.org/en-US/MPL/2.0/", |
|
"mit": "https://choosealicense.com/licenses/mit/", |
|
"apache 2.0": "https://choosealicense.com/licenses/apache-2.0/", |
|
"apache2": "https://choosealicense.com/licenses/apache-2.0/", |
|
"cc-by-sa 4.0": "https://creativecommons.org/licenses/by-sa/4.0/", |
|
"cpml": "https://coqui.ai/cpml.txt", |
|
} |
|
|
|
|
|
class ModelManager(object): |
|
"""Manage TTS models defined in .models.json. |
|
It provides an interface to list and download |
|
models defines in '.model.json' |
|
|
|
Models are downloaded under '.TTS' folder in the user's |
|
home path. |
|
|
|
Args: |
|
models_file (str): path to .model.json file. Defaults to None. |
|
output_prefix (str): prefix to `tts` to download models. Defaults to None |
|
progress_bar (bool): print a progress bar when donwloading a file. Defaults to False. |
|
verbose (bool): print info. Defaults to True. |
|
""" |
|
|
|
def __init__(self, models_file=None, output_prefix=None, progress_bar=False, verbose=True): |
|
super().__init__() |
|
self.progress_bar = progress_bar |
|
self.verbose = verbose |
|
if output_prefix is None: |
|
self.output_prefix = get_user_data_dir("tts") |
|
else: |
|
self.output_prefix = os.path.join(output_prefix, "tts") |
|
self.models_dict = None |
|
if models_file is not None: |
|
self.read_models_file(models_file) |
|
else: |
|
|
|
path = Path(__file__).parent / "../.models.json" |
|
self.read_models_file(path) |
|
|
|
def read_models_file(self, file_path): |
|
"""Read .models.json as a dict |
|
|
|
Args: |
|
file_path (str): path to .models.json. |
|
""" |
|
with open(file_path, "r", encoding="utf-8") as json_file: |
|
self.models_dict = json.load(json_file) |
|
|
|
def add_cs_api_models(self, model_list: List[str]): |
|
"""Add list of Coqui Studio model names that are returned from the api |
|
|
|
Each has the following format `<coqui_studio_model>/en/<speaker_name>/<coqui_studio_model>` |
|
""" |
|
|
|
def _add_model(model_name: str): |
|
if not "coqui_studio" in model_name: |
|
return |
|
model_type, lang, dataset, model = model_name.split("/") |
|
if model_type not in self.models_dict: |
|
self.models_dict[model_type] = {} |
|
if lang not in self.models_dict[model_type]: |
|
self.models_dict[model_type][lang] = {} |
|
if dataset not in self.models_dict[model_type][lang]: |
|
self.models_dict[model_type][lang][dataset] = {} |
|
if model not in self.models_dict[model_type][lang][dataset]: |
|
self.models_dict[model_type][lang][dataset][model] = {} |
|
|
|
for model_name in model_list: |
|
_add_model(model_name) |
|
|
|
def _list_models(self, model_type, model_count=0): |
|
if self.verbose: |
|
print("\n Name format: type/language/dataset/model") |
|
model_list = [] |
|
for lang in self.models_dict[model_type]: |
|
for dataset in self.models_dict[model_type][lang]: |
|
for model in self.models_dict[model_type][lang][dataset]: |
|
model_full_name = f"{model_type}--{lang}--{dataset}--{model}" |
|
output_path = os.path.join(self.output_prefix, model_full_name) |
|
if self.verbose: |
|
if os.path.exists(output_path): |
|
print(f" {model_count}: {model_type}/{lang}/{dataset}/{model} [already downloaded]") |
|
else: |
|
print(f" {model_count}: {model_type}/{lang}/{dataset}/{model}") |
|
model_list.append(f"{model_type}/{lang}/{dataset}/{model}") |
|
model_count += 1 |
|
return model_list |
|
|
|
def _list_for_model_type(self, model_type): |
|
models_name_list = [] |
|
model_count = 1 |
|
models_name_list.extend(self._list_models(model_type, model_count)) |
|
return models_name_list |
|
|
|
def list_models(self): |
|
models_name_list = [] |
|
model_count = 1 |
|
for model_type in self.models_dict: |
|
model_list = self._list_models(model_type, model_count) |
|
models_name_list.extend(model_list) |
|
return models_name_list |
|
|
|
def model_info_by_idx(self, model_query): |
|
"""Print the description of the model from .models.json file using model_idx |
|
|
|
Args: |
|
model_query (str): <model_tye>/<model_idx> |
|
""" |
|
model_name_list = [] |
|
model_type, model_query_idx = model_query.split("/") |
|
try: |
|
model_query_idx = int(model_query_idx) |
|
if model_query_idx <= 0: |
|
print("> model_query_idx should be a positive integer!") |
|
return |
|
except: |
|
print("> model_query_idx should be an integer!") |
|
return |
|
model_count = 0 |
|
if model_type in self.models_dict: |
|
for lang in self.models_dict[model_type]: |
|
for dataset in self.models_dict[model_type][lang]: |
|
for model in self.models_dict[model_type][lang][dataset]: |
|
model_name_list.append(f"{model_type}/{lang}/{dataset}/{model}") |
|
model_count += 1 |
|
else: |
|
print(f"> model_type {model_type} does not exist in the list.") |
|
return |
|
if model_query_idx > model_count: |
|
print(f"model query idx exceeds the number of available models [{model_count}] ") |
|
else: |
|
model_type, lang, dataset, model = model_name_list[model_query_idx - 1].split("/") |
|
print(f"> model type : {model_type}") |
|
print(f"> language supported : {lang}") |
|
print(f"> dataset used : {dataset}") |
|
print(f"> model name : {model}") |
|
if "description" in self.models_dict[model_type][lang][dataset][model]: |
|
print(f"> description : {self.models_dict[model_type][lang][dataset][model]['description']}") |
|
else: |
|
print("> description : coming soon") |
|
if "default_vocoder" in self.models_dict[model_type][lang][dataset][model]: |
|
print(f"> default_vocoder : {self.models_dict[model_type][lang][dataset][model]['default_vocoder']}") |
|
|
|
def model_info_by_full_name(self, model_query_name): |
|
"""Print the description of the model from .models.json file using model_full_name |
|
|
|
Args: |
|
model_query_name (str): Format is <model_type>/<language>/<dataset>/<model_name> |
|
""" |
|
model_type, lang, dataset, model = model_query_name.split("/") |
|
if model_type in self.models_dict: |
|
if lang in self.models_dict[model_type]: |
|
if dataset in self.models_dict[model_type][lang]: |
|
if model in self.models_dict[model_type][lang][dataset]: |
|
print(f"> model type : {model_type}") |
|
print(f"> language supported : {lang}") |
|
print(f"> dataset used : {dataset}") |
|
print(f"> model name : {model}") |
|
if "description" in self.models_dict[model_type][lang][dataset][model]: |
|
print( |
|
f"> description : {self.models_dict[model_type][lang][dataset][model]['description']}" |
|
) |
|
else: |
|
print("> description : coming soon") |
|
if "default_vocoder" in self.models_dict[model_type][lang][dataset][model]: |
|
print( |
|
f"> default_vocoder : {self.models_dict[model_type][lang][dataset][model]['default_vocoder']}" |
|
) |
|
else: |
|
print(f"> model {model} does not exist for {model_type}/{lang}/{dataset}.") |
|
else: |
|
print(f"> dataset {dataset} does not exist for {model_type}/{lang}.") |
|
else: |
|
print(f"> lang {lang} does not exist for {model_type}.") |
|
else: |
|
print(f"> model_type {model_type} does not exist in the list.") |
|
|
|
def list_tts_models(self): |
|
"""Print all `TTS` models and return a list of model names |
|
|
|
Format is `language/dataset/model` |
|
""" |
|
return self._list_for_model_type("tts_models") |
|
|
|
def list_vocoder_models(self): |
|
"""Print all the `vocoder` models and return a list of model names |
|
|
|
Format is `language/dataset/model` |
|
""" |
|
return self._list_for_model_type("vocoder_models") |
|
|
|
def list_vc_models(self): |
|
"""Print all the voice conversion models and return a list of model names |
|
|
|
Format is `language/dataset/model` |
|
""" |
|
return self._list_for_model_type("voice_conversion_models") |
|
|
|
def list_langs(self): |
|
"""Print all the available languages""" |
|
print(" Name format: type/language") |
|
for model_type in self.models_dict: |
|
for lang in self.models_dict[model_type]: |
|
print(f" >: {model_type}/{lang} ") |
|
|
|
def list_datasets(self): |
|
"""Print all the datasets""" |
|
print(" Name format: type/language/dataset") |
|
for model_type in self.models_dict: |
|
for lang in self.models_dict[model_type]: |
|
for dataset in self.models_dict[model_type][lang]: |
|
print(f" >: {model_type}/{lang}/{dataset}") |
|
|
|
@staticmethod |
|
def print_model_license(model_item: Dict): |
|
"""Print the license of a model |
|
|
|
Args: |
|
model_item (dict): model item in the models.json |
|
""" |
|
if "license" in model_item and model_item["license"].strip() != "": |
|
print(f" > Model's license - {model_item['license']}") |
|
if model_item["license"].lower() in LICENSE_URLS: |
|
print(f" > Check {LICENSE_URLS[model_item['license'].lower()]} for more info.") |
|
else: |
|
print(" > Check https://opensource.org/licenses for more info.") |
|
else: |
|
print(" > Model's license - No license information available") |
|
|
|
def _download_github_model(self, model_item: Dict, output_path: str): |
|
if isinstance(model_item["github_rls_url"], list): |
|
self._download_model_files(model_item["github_rls_url"], output_path, self.progress_bar) |
|
else: |
|
self._download_zip_file(model_item["github_rls_url"], output_path, self.progress_bar) |
|
|
|
def _download_hf_model(self, model_item: Dict, output_path: str): |
|
if isinstance(model_item["hf_url"], list): |
|
self._download_model_files(model_item["hf_url"], output_path, self.progress_bar) |
|
else: |
|
self._download_zip_file(model_item["hf_url"], output_path, self.progress_bar) |
|
|
|
def download_fairseq_model(self, model_name, output_path): |
|
URI_PREFIX = "https://coqui.gateway.scarf.sh/fairseq/" |
|
_, lang, _, _ = model_name.split("/") |
|
model_download_uri = os.path.join(URI_PREFIX, f"{lang}.tar.gz") |
|
self._download_tar_file(model_download_uri, output_path, self.progress_bar) |
|
|
|
@staticmethod |
|
def set_model_url(model_item: Dict): |
|
model_item["model_url"] = None |
|
if "github_rls_url" in model_item: |
|
model_item["model_url"] = model_item["github_rls_url"] |
|
elif "hf_url" in model_item: |
|
model_item["model_url"] = model_item["hf_url"] |
|
elif "fairseq" in model_item["model_name"]: |
|
model_item["model_url"] = "https://coqui.gateway.scarf.sh/fairseq/" |
|
return model_item |
|
|
|
def _set_model_item(self, model_name): |
|
|
|
model_type, lang, dataset, model = model_name.split("/") |
|
model_full_name = f"{model_type}--{lang}--{dataset}--{model}" |
|
if "fairseq" in model_name: |
|
model_item = { |
|
"model_type": "tts_models", |
|
"license": "CC BY-NC 4.0", |
|
"default_vocoder": None, |
|
"author": "fairseq", |
|
"description": "this model is released by Meta under Fairseq repo. Visit https://github.com/facebookresearch/fairseq/tree/main/examples/mms for more info.", |
|
} |
|
model_item["model_name"] = model_name |
|
else: |
|
|
|
model_item = self.models_dict[model_type][lang][dataset][model] |
|
model_item["model_type"] = model_type |
|
md5hash = model_item["model_hash"] if "model_hash" in model_item else None |
|
model_item = self.set_model_url(model_item) |
|
return model_item, model_full_name, model, md5hash |
|
|
|
@staticmethod |
|
def ask_tos(model_full_path): |
|
"""Ask the user to agree to the terms of service""" |
|
tos_path = os.path.join(model_full_path, "tos_agreed.txt") |
|
print(" > You must agree to the terms of service to use this model.") |
|
print(" | > Please see the terms of service at https://coqui.ai/cpml.txt") |
|
print(' | > "I have read, understood and agreed to the Terms and Conditions." - [y/n]') |
|
answer = input(" | | > ") |
|
if answer.lower() == "y": |
|
with open(tos_path, "w", encoding="utf-8") as f: |
|
f.write("I have read, understood and agreed to the Terms and Conditions.") |
|
return True |
|
return False |
|
|
|
@staticmethod |
|
def tos_agreed(model_item, model_full_path): |
|
"""Check if the user has agreed to the terms of service""" |
|
if "tos_required" in model_item and model_item["tos_required"]: |
|
tos_path = os.path.join(model_full_path, "tos_agreed.txt") |
|
if os.path.exists(tos_path) or os.environ.get("COQUI_TOS_AGREED") == "1": |
|
return True |
|
return False |
|
return True |
|
|
|
def create_dir_and_download_model(self, model_name, model_item, output_path): |
|
os.makedirs(output_path, exist_ok=True) |
|
|
|
if not self.tos_agreed(model_item, output_path): |
|
if not self.ask_tos(output_path): |
|
os.rmdir(output_path) |
|
raise Exception(" [!] You must agree to the terms of service to use this model.") |
|
print(f" > Downloading model to {output_path}") |
|
try: |
|
if "fairseq" in model_name: |
|
self.download_fairseq_model(model_name, output_path) |
|
elif "github_rls_url" in model_item: |
|
self._download_github_model(model_item, output_path) |
|
elif "hf_url" in model_item: |
|
self._download_hf_model(model_item, output_path) |
|
|
|
except requests.RequestException as e: |
|
print(f" > Failed to download the model file to {output_path}") |
|
rmtree(output_path) |
|
raise e |
|
self.print_model_license(model_item=model_item) |
|
|
|
def check_if_configs_are_equal(self, model_name, model_item, output_path): |
|
with fsspec.open(self._find_files(output_path)[1], "r", encoding="utf-8") as f: |
|
config_local = json.load(f) |
|
remote_url = None |
|
for url in model_item["hf_url"]: |
|
if "config.json" in url: |
|
remote_url = url |
|
break |
|
|
|
with fsspec.open(remote_url, "r", encoding="utf-8") as f: |
|
config_remote = json.load(f) |
|
|
|
if not config_local == config_remote: |
|
print(f" > {model_name} is already downloaded however it has been changed. Redownloading it...") |
|
self.create_dir_and_download_model(model_name, model_item, output_path) |
|
|
|
def download_model(self, model_name): |
|
"""Download model files given the full model name. |
|
Model name is in the format |
|
'type/language/dataset/model' |
|
e.g. 'tts_model/en/ljspeech/tacotron' |
|
|
|
Every model must have the following files: |
|
- *.pth : pytorch model checkpoint file. |
|
- config.json : model config file. |
|
- scale_stats.npy (if exist): scale values for preprocessing. |
|
|
|
Args: |
|
model_name (str): model name as explained above. |
|
""" |
|
model_item, model_full_name, model, md5sum = self._set_model_item(model_name) |
|
|
|
output_path = os.path.join(self.output_prefix, model_full_name) |
|
if os.path.exists(output_path): |
|
if md5sum is not None: |
|
md5sum_file = os.path.join(output_path, "hash.md5") |
|
if os.path.isfile(md5sum_file): |
|
with open(md5sum_file, mode="r") as f: |
|
if not f.read() == md5sum: |
|
print(f" > {model_name} has been updated, clearing model cache...") |
|
self.create_dir_and_download_model(model_name, model_item, output_path) |
|
else: |
|
print(f" > {model_name} is already downloaded.") |
|
else: |
|
print(f" > {model_name} has been updated, clearing model cache...") |
|
self.create_dir_and_download_model(model_name, model_item, output_path) |
|
|
|
|
|
if "xtts" in model_name: |
|
try: |
|
self.check_if_configs_are_equal(model_name, model_item, output_path) |
|
except: |
|
pass |
|
else: |
|
print(f" > {model_name} is already downloaded.") |
|
else: |
|
self.create_dir_and_download_model(model_name, model_item, output_path) |
|
|
|
|
|
output_model_path = output_path |
|
output_config_path = None |
|
if ( |
|
model not in ["tortoise-v2", "bark"] and "fairseq" not in model_name and "xtts" not in model_name |
|
): |
|
output_model_path, output_config_path = self._find_files(output_path) |
|
|
|
self._update_paths(output_path, output_config_path) |
|
return output_model_path, output_config_path, model_item |
|
|
|
@staticmethod |
|
def _find_files(output_path: str) -> Tuple[str, str]: |
|
"""Find the model and config files in the output path |
|
|
|
Args: |
|
output_path (str): path to the model files |
|
|
|
Returns: |
|
Tuple[str, str]: path to the model file and config file |
|
""" |
|
model_file = None |
|
config_file = None |
|
for file_name in os.listdir(output_path): |
|
if file_name in ["model_file.pth", "model_file.pth.tar", "model.pth"]: |
|
model_file = os.path.join(output_path, file_name) |
|
elif file_name == "config.json": |
|
config_file = os.path.join(output_path, file_name) |
|
if model_file is None: |
|
raise ValueError(" [!] Model file not found in the output path") |
|
if config_file is None: |
|
raise ValueError(" [!] Config file not found in the output path") |
|
return model_file, config_file |
|
|
|
@staticmethod |
|
def _find_speaker_encoder(output_path: str) -> str: |
|
"""Find the speaker encoder file in the output path |
|
|
|
Args: |
|
output_path (str): path to the model files |
|
|
|
Returns: |
|
str: path to the speaker encoder file |
|
""" |
|
speaker_encoder_file = None |
|
for file_name in os.listdir(output_path): |
|
if file_name in ["model_se.pth", "model_se.pth.tar"]: |
|
speaker_encoder_file = os.path.join(output_path, file_name) |
|
return speaker_encoder_file |
|
|
|
def _update_paths(self, output_path: str, config_path: str) -> None: |
|
"""Update paths for certain files in config.json after download. |
|
|
|
Args: |
|
output_path (str): local path the model is downloaded to. |
|
config_path (str): local config.json path. |
|
""" |
|
output_stats_path = os.path.join(output_path, "scale_stats.npy") |
|
output_d_vector_file_path = os.path.join(output_path, "speakers.json") |
|
output_d_vector_file_pth_path = os.path.join(output_path, "speakers.pth") |
|
output_speaker_ids_file_path = os.path.join(output_path, "speaker_ids.json") |
|
output_speaker_ids_file_pth_path = os.path.join(output_path, "speaker_ids.pth") |
|
speaker_encoder_config_path = os.path.join(output_path, "config_se.json") |
|
speaker_encoder_model_path = self._find_speaker_encoder(output_path) |
|
|
|
|
|
self._update_path("audio.stats_path", output_stats_path, config_path) |
|
|
|
|
|
self._update_path("d_vector_file", output_d_vector_file_path, config_path) |
|
self._update_path("d_vector_file", output_d_vector_file_pth_path, config_path) |
|
self._update_path("model_args.d_vector_file", output_d_vector_file_path, config_path) |
|
self._update_path("model_args.d_vector_file", output_d_vector_file_pth_path, config_path) |
|
|
|
|
|
self._update_path("speakers_file", output_speaker_ids_file_path, config_path) |
|
self._update_path("speakers_file", output_speaker_ids_file_pth_path, config_path) |
|
self._update_path("model_args.speakers_file", output_speaker_ids_file_path, config_path) |
|
self._update_path("model_args.speakers_file", output_speaker_ids_file_pth_path, config_path) |
|
|
|
|
|
self._update_path("speaker_encoder_model_path", speaker_encoder_model_path, config_path) |
|
self._update_path("model_args.speaker_encoder_model_path", speaker_encoder_model_path, config_path) |
|
self._update_path("speaker_encoder_config_path", speaker_encoder_config_path, config_path) |
|
self._update_path("model_args.speaker_encoder_config_path", speaker_encoder_config_path, config_path) |
|
|
|
@staticmethod |
|
def _update_path(field_name, new_path, config_path): |
|
"""Update the path in the model config.json for the current environment after download""" |
|
if new_path and os.path.exists(new_path): |
|
config = load_config(config_path) |
|
field_names = field_name.split(".") |
|
if len(field_names) > 1: |
|
|
|
sub_conf = config |
|
for fd in field_names[:-1]: |
|
if fd in sub_conf: |
|
sub_conf = sub_conf[fd] |
|
else: |
|
return |
|
if isinstance(sub_conf[field_names[-1]], list): |
|
sub_conf[field_names[-1]] = [new_path] |
|
else: |
|
sub_conf[field_names[-1]] = new_path |
|
else: |
|
|
|
if not field_name in config: |
|
return |
|
if isinstance(config[field_name], list): |
|
config[field_name] = [new_path] |
|
else: |
|
config[field_name] = new_path |
|
config.save_json(config_path) |
|
|
|
@staticmethod |
|
def _download_zip_file(file_url, output_folder, progress_bar): |
|
"""Download the github releases""" |
|
|
|
r = requests.get(file_url, stream=True) |
|
|
|
try: |
|
total_size_in_bytes = int(r.headers.get("content-length", 0)) |
|
block_size = 1024 |
|
if progress_bar: |
|
progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True) |
|
temp_zip_name = os.path.join(output_folder, file_url.split("/")[-1]) |
|
with open(temp_zip_name, "wb") as file: |
|
for data in r.iter_content(block_size): |
|
if progress_bar: |
|
progress_bar.update(len(data)) |
|
file.write(data) |
|
with zipfile.ZipFile(temp_zip_name) as z: |
|
z.extractall(output_folder) |
|
os.remove(temp_zip_name) |
|
except zipfile.BadZipFile: |
|
print(f" > Error: Bad zip file - {file_url}") |
|
raise zipfile.BadZipFile |
|
|
|
for file_path in z.namelist(): |
|
src_path = os.path.join(output_folder, file_path) |
|
if os.path.isfile(src_path): |
|
dst_path = os.path.join(output_folder, os.path.basename(file_path)) |
|
if src_path != dst_path: |
|
copyfile(src_path, dst_path) |
|
|
|
for file_path in z.namelist(): |
|
if os.path.isdir(os.path.join(output_folder, file_path)): |
|
rmtree(os.path.join(output_folder, file_path)) |
|
|
|
@staticmethod |
|
def _download_tar_file(file_url, output_folder, progress_bar): |
|
"""Download the github releases""" |
|
|
|
r = requests.get(file_url, stream=True) |
|
|
|
try: |
|
total_size_in_bytes = int(r.headers.get("content-length", 0)) |
|
block_size = 1024 |
|
if progress_bar: |
|
progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True) |
|
temp_tar_name = os.path.join(output_folder, file_url.split("/")[-1]) |
|
with open(temp_tar_name, "wb") as file: |
|
for data in r.iter_content(block_size): |
|
if progress_bar: |
|
progress_bar.update(len(data)) |
|
file.write(data) |
|
with tarfile.open(temp_tar_name) as t: |
|
t.extractall(output_folder) |
|
tar_names = t.getnames() |
|
os.remove(temp_tar_name) |
|
except tarfile.ReadError: |
|
print(f" > Error: Bad tar file - {file_url}") |
|
raise tarfile.ReadError |
|
|
|
for file_path in os.listdir(os.path.join(output_folder, tar_names[0])): |
|
src_path = os.path.join(output_folder, tar_names[0], file_path) |
|
dst_path = os.path.join(output_folder, os.path.basename(file_path)) |
|
if src_path != dst_path: |
|
copyfile(src_path, dst_path) |
|
|
|
rmtree(os.path.join(output_folder, tar_names[0])) |
|
|
|
@staticmethod |
|
def _download_model_files(file_urls, output_folder, progress_bar): |
|
"""Download the github releases""" |
|
for file_url in file_urls: |
|
|
|
r = requests.get(file_url, stream=True) |
|
|
|
bease_filename = file_url.split("/")[-1] |
|
temp_zip_name = os.path.join(output_folder, bease_filename) |
|
total_size_in_bytes = int(r.headers.get("content-length", 0)) |
|
block_size = 1024 |
|
with open(temp_zip_name, "wb") as file: |
|
if progress_bar: |
|
progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True) |
|
for data in r.iter_content(block_size): |
|
if progress_bar: |
|
progress_bar.update(len(data)) |
|
file.write(data) |
|
|
|
@staticmethod |
|
def _check_dict_key(my_dict, key): |
|
if key in my_dict.keys() and my_dict[key] is not None: |
|
if not isinstance(key, str): |
|
return True |
|
if isinstance(key, str) and len(my_dict[key]) > 0: |
|
return True |
|
return False |
|
|