|
from typing import Dict |
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
|
|
|
|
def numpy_to_torch(np_array, dtype, cuda=False, device="cpu"): |
|
if cuda: |
|
device = "cuda" |
|
if np_array is None: |
|
return None |
|
tensor = torch.as_tensor(np_array, dtype=dtype, device=device) |
|
return tensor |
|
|
|
|
|
def compute_style_mel(style_wav, ap, cuda=False, device="cpu"): |
|
if cuda: |
|
device = "cuda" |
|
style_mel = torch.FloatTensor( |
|
ap.melspectrogram(ap.load_wav(style_wav, sr=ap.sample_rate)), |
|
device=device, |
|
).unsqueeze(0) |
|
return style_mel |
|
|
|
|
|
def run_model_torch( |
|
model: nn.Module, |
|
inputs: torch.Tensor, |
|
speaker_id: int = None, |
|
style_mel: torch.Tensor = None, |
|
style_text: str = None, |
|
d_vector: torch.Tensor = None, |
|
language_id: torch.Tensor = None, |
|
) -> Dict: |
|
"""Run a torch model for inference. It does not support batch inference. |
|
|
|
Args: |
|
model (nn.Module): The model to run inference. |
|
inputs (torch.Tensor): Input tensor with character ids. |
|
speaker_id (int, optional): Input speaker ids for multi-speaker models. Defaults to None. |
|
style_mel (torch.Tensor, optional): Spectrograms used for voice styling . Defaults to None. |
|
d_vector (torch.Tensor, optional): d-vector for multi-speaker models . Defaults to None. |
|
|
|
Returns: |
|
Dict: model outputs. |
|
""" |
|
input_lengths = torch.tensor(inputs.shape[1:2]).to(inputs.device) |
|
if hasattr(model, "module"): |
|
_func = model.module.inference |
|
else: |
|
_func = model.inference |
|
outputs = _func( |
|
inputs, |
|
aux_input={ |
|
"x_lengths": input_lengths, |
|
"speaker_ids": speaker_id, |
|
"d_vectors": d_vector, |
|
"style_mel": style_mel, |
|
"style_text": style_text, |
|
"language_ids": language_id, |
|
}, |
|
) |
|
return outputs |
|
|
|
|
|
def trim_silence(wav, ap): |
|
return wav[: ap.find_endpoint(wav)] |
|
|
|
|
|
def inv_spectrogram(postnet_output, ap, CONFIG): |
|
if CONFIG.model.lower() in ["tacotron"]: |
|
wav = ap.inv_spectrogram(postnet_output.T) |
|
else: |
|
wav = ap.inv_melspectrogram(postnet_output.T) |
|
return wav |
|
|
|
|
|
def id_to_torch(aux_id, cuda=False, device="cpu"): |
|
if cuda: |
|
device = "cuda" |
|
if aux_id is not None: |
|
aux_id = np.asarray(aux_id) |
|
aux_id = torch.from_numpy(aux_id).to(device) |
|
return aux_id |
|
|
|
|
|
def embedding_to_torch(d_vector, cuda=False, device="cpu"): |
|
if cuda: |
|
device = "cuda" |
|
if d_vector is not None: |
|
d_vector = np.asarray(d_vector) |
|
d_vector = torch.from_numpy(d_vector).type(torch.FloatTensor) |
|
d_vector = d_vector.squeeze().unsqueeze(0).to(device) |
|
return d_vector |
|
|
|
|
|
|
|
def apply_griffin_lim(inputs, input_lens, CONFIG, ap): |
|
"""Apply griffin-lim to each sample iterating throught the first dimension. |
|
Args: |
|
inputs (Tensor or np.Array): Features to be converted by GL. First dimension is the batch size. |
|
input_lens (Tensor or np.Array): 1D array of sample lengths. |
|
CONFIG (Dict): TTS config. |
|
ap (AudioProcessor): TTS audio processor. |
|
""" |
|
wavs = [] |
|
for idx, spec in enumerate(inputs): |
|
wav_len = (input_lens[idx] * ap.hop_length) - ap.hop_length |
|
wav = inv_spectrogram(spec, ap, CONFIG) |
|
|
|
wavs.append(wav[:wav_len]) |
|
return wavs |
|
|
|
|
|
def synthesis( |
|
model, |
|
text, |
|
CONFIG, |
|
use_cuda, |
|
speaker_id=None, |
|
style_wav=None, |
|
style_text=None, |
|
use_griffin_lim=False, |
|
do_trim_silence=False, |
|
d_vector=None, |
|
language_id=None, |
|
): |
|
"""Synthesize voice for the given text using Griffin-Lim vocoder or just compute output features to be passed to |
|
the vocoder model. |
|
|
|
Args: |
|
model (TTS.tts.models): |
|
The TTS model to synthesize audio with. |
|
|
|
text (str): |
|
The input text to convert to speech. |
|
|
|
CONFIG (Coqpit): |
|
Model configuration. |
|
|
|
use_cuda (bool): |
|
Enable/disable CUDA. |
|
|
|
speaker_id (int): |
|
Speaker ID passed to the speaker embedding layer in multi-speaker model. Defaults to None. |
|
|
|
style_wav (str | Dict[str, float]): |
|
Path or tensor to/of a waveform used for computing the style embedding based on GST or Capacitron. |
|
Defaults to None, meaning that Capacitron models will sample from the prior distribution to |
|
generate random but realistic prosody. |
|
|
|
style_text (str): |
|
Transcription of style_wav for Capacitron models. Defaults to None. |
|
|
|
enable_eos_bos_chars (bool): |
|
enable special chars for end of sentence and start of sentence. Defaults to False. |
|
|
|
do_trim_silence (bool): |
|
trim silence after synthesis. Defaults to False. |
|
|
|
d_vector (torch.Tensor): |
|
d-vector for multi-speaker models in share :math:`[1, D]`. Defaults to None. |
|
|
|
language_id (int): |
|
Language ID passed to the language embedding layer in multi-langual model. Defaults to None. |
|
""" |
|
|
|
device = next(model.parameters()).device |
|
if use_cuda: |
|
device = "cuda" |
|
|
|
|
|
|
|
style_mel = None |
|
if CONFIG.has("gst") and CONFIG.gst and style_wav is not None: |
|
if isinstance(style_wav, dict): |
|
style_mel = style_wav |
|
else: |
|
style_mel = compute_style_mel(style_wav, model.ap, device=device) |
|
|
|
if CONFIG.has("capacitron_vae") and CONFIG.use_capacitron_vae and style_wav is not None: |
|
style_mel = compute_style_mel(style_wav, model.ap, device=device) |
|
style_mel = style_mel.transpose(1, 2) |
|
|
|
language_name = None |
|
if language_id is not None: |
|
language = [k for k, v in model.language_manager.name_to_id.items() if v == language_id] |
|
assert len(language) == 1, "language_id must be a valid language" |
|
language_name = language[0] |
|
|
|
|
|
text_inputs = np.asarray( |
|
model.tokenizer.text_to_ids(text, language=language_name), |
|
dtype=np.int32, |
|
) |
|
|
|
if speaker_id is not None: |
|
speaker_id = id_to_torch(speaker_id, device=device) |
|
|
|
if d_vector is not None: |
|
d_vector = embedding_to_torch(d_vector, device=device) |
|
|
|
if language_id is not None: |
|
language_id = id_to_torch(language_id, device=device) |
|
|
|
if not isinstance(style_mel, dict): |
|
|
|
style_mel = numpy_to_torch(style_mel, torch.float, device=device) |
|
if style_text is not None: |
|
style_text = np.asarray( |
|
model.tokenizer.text_to_ids(style_text, language=language_id), |
|
dtype=np.int32, |
|
) |
|
style_text = numpy_to_torch(style_text, torch.long, device=device) |
|
style_text = style_text.unsqueeze(0) |
|
|
|
text_inputs = numpy_to_torch(text_inputs, torch.long, device=device) |
|
text_inputs = text_inputs.unsqueeze(0) |
|
|
|
outputs = run_model_torch( |
|
model, |
|
text_inputs, |
|
speaker_id, |
|
style_mel, |
|
style_text, |
|
d_vector=d_vector, |
|
language_id=language_id, |
|
) |
|
model_outputs = outputs["model_outputs"] |
|
model_outputs = model_outputs[0].data.cpu().numpy() |
|
alignments = outputs["alignments"] |
|
|
|
|
|
|
|
wav = None |
|
model_outputs = model_outputs.squeeze() |
|
if model_outputs.ndim == 2: |
|
if use_griffin_lim: |
|
wav = inv_spectrogram(model_outputs, model.ap, CONFIG) |
|
|
|
if do_trim_silence: |
|
wav = trim_silence(wav, model.ap) |
|
else: |
|
wav = model_outputs |
|
return_dict = { |
|
"wav": wav, |
|
"alignments": alignments, |
|
"text_inputs": text_inputs, |
|
"outputs": outputs, |
|
} |
|
return return_dict |
|
|
|
|
|
def transfer_voice( |
|
model, |
|
CONFIG, |
|
use_cuda, |
|
reference_wav, |
|
speaker_id=None, |
|
d_vector=None, |
|
reference_speaker_id=None, |
|
reference_d_vector=None, |
|
do_trim_silence=False, |
|
use_griffin_lim=False, |
|
): |
|
"""Synthesize voice for the given text using Griffin-Lim vocoder or just compute output features to be passed to |
|
the vocoder model. |
|
|
|
Args: |
|
model (TTS.tts.models): |
|
The TTS model to synthesize audio with. |
|
|
|
CONFIG (Coqpit): |
|
Model configuration. |
|
|
|
use_cuda (bool): |
|
Enable/disable CUDA. |
|
|
|
reference_wav (str): |
|
Path of reference_wav to be used to voice conversion. |
|
|
|
speaker_id (int): |
|
Speaker ID passed to the speaker embedding layer in multi-speaker model. Defaults to None. |
|
|
|
d_vector (torch.Tensor): |
|
d-vector for multi-speaker models in share :math:`[1, D]`. Defaults to None. |
|
|
|
reference_speaker_id (int): |
|
Reference Speaker ID passed to the speaker embedding layer in multi-speaker model. Defaults to None. |
|
|
|
reference_d_vector (torch.Tensor): |
|
Reference d-vector for multi-speaker models in share :math:`[1, D]`. Defaults to None. |
|
|
|
enable_eos_bos_chars (bool): |
|
enable special chars for end of sentence and start of sentence. Defaults to False. |
|
|
|
do_trim_silence (bool): |
|
trim silence after synthesis. Defaults to False. |
|
""" |
|
|
|
device = next(model.parameters()).device |
|
if use_cuda: |
|
device = "cuda" |
|
|
|
|
|
if speaker_id is not None: |
|
speaker_id = id_to_torch(speaker_id, device=device) |
|
|
|
if d_vector is not None: |
|
d_vector = embedding_to_torch(d_vector, device=device) |
|
|
|
if reference_d_vector is not None: |
|
reference_d_vector = embedding_to_torch(reference_d_vector, device=device) |
|
|
|
|
|
reference_wav = embedding_to_torch( |
|
model.ap.load_wav( |
|
reference_wav, sr=model.args.encoder_sample_rate if model.args.encoder_sample_rate else model.ap.sample_rate |
|
), |
|
device=device, |
|
) |
|
|
|
if hasattr(model, "module"): |
|
_func = model.module.inference_voice_conversion |
|
else: |
|
_func = model.inference_voice_conversion |
|
model_outputs = _func(reference_wav, speaker_id, d_vector, reference_speaker_id, reference_d_vector) |
|
|
|
|
|
|
|
wav = None |
|
model_outputs = model_outputs.squeeze() |
|
if model_outputs.ndim == 2: |
|
if use_griffin_lim: |
|
wav = inv_spectrogram(model_outputs, model.ap, CONFIG) |
|
|
|
if do_trim_silence: |
|
wav = trim_silence(wav, model.ap) |
|
else: |
|
wav = model_outputs |
|
|
|
return wav |
|
|