|
from dataclasses import dataclass, field |
|
from typing import List |
|
|
|
from TTS.tts.configs.shared_configs import BaseTTSConfig |
|
from TTS.tts.models.align_tts import AlignTTSArgs |
|
|
|
|
|
@dataclass |
|
class AlignTTSConfig(BaseTTSConfig): |
|
"""Defines parameters for AlignTTS model. |
|
Example: |
|
|
|
>>> from TTS.tts.configs.align_tts_config import AlignTTSConfig |
|
>>> config = AlignTTSConfig() |
|
|
|
Args: |
|
model(str): |
|
Model name used for selecting the right model at initialization. Defaults to `align_tts`. |
|
positional_encoding (bool): |
|
enable / disable positional encoding applied to the encoder output. Defaults to True. |
|
hidden_channels (int): |
|
Base number of hidden channels. Defines all the layers expect ones defined by the specific encoder or decoder |
|
parameters. Defaults to 256. |
|
hidden_channels_dp (int): |
|
Number of hidden channels of the duration predictor's layers. Defaults to 256. |
|
encoder_type (str): |
|
Type of the encoder used by the model. Look at `TTS.tts.layers.feed_forward.encoder` for more details. |
|
Defaults to `fftransformer`. |
|
encoder_params (dict): |
|
Parameters used to define the encoder network. Look at `TTS.tts.layers.feed_forward.encoder` for more details. |
|
Defaults to `{"hidden_channels_ffn": 1024, "num_heads": 2, "num_layers": 6, "dropout_p": 0.1}`. |
|
decoder_type (str): |
|
Type of the decoder used by the model. Look at `TTS.tts.layers.feed_forward.decoder` for more details. |
|
Defaults to `fftransformer`. |
|
decoder_params (dict): |
|
Parameters used to define the decoder network. Look at `TTS.tts.layers.feed_forward.decoder` for more details. |
|
Defaults to `{"hidden_channels_ffn": 1024, "num_heads": 2, "num_layers": 6, "dropout_p": 0.1}`. |
|
phase_start_steps (List[int]): |
|
A list of number of steps required to start the next training phase. AlignTTS has 4 different training |
|
phases. Thus you need to define 4 different values to enable phase based training. If None, it |
|
trains the whole model together. Defaults to None. |
|
ssim_alpha (float): |
|
Weight for the SSIM loss. If set <= 0, disables the SSIM loss. Defaults to 1.0. |
|
duration_loss_alpha (float): |
|
Weight for the duration predictor's loss. Defaults to 1.0. |
|
mdn_alpha (float): |
|
Weight for the MDN loss. Defaults to 1.0. |
|
spec_loss_alpha (float): |
|
Weight for the MSE spectrogram loss. If set <= 0, disables the L1 loss. Defaults to 1.0. |
|
use_speaker_embedding (bool): |
|
enable / disable using speaker embeddings for multi-speaker models. If set True, the model is |
|
in the multi-speaker mode. Defaults to False. |
|
use_d_vector_file (bool): |
|
enable /disable using external speaker embeddings in place of the learned embeddings. Defaults to False. |
|
d_vector_file (str): |
|
Path to the file including pre-computed speaker embeddings. Defaults to None. |
|
noam_schedule (bool): |
|
enable / disable the use of Noam LR scheduler. Defaults to False. |
|
warmup_steps (int): |
|
Number of warm-up steps for the Noam scheduler. Defaults 4000. |
|
lr (float): |
|
Initial learning rate. Defaults to `1e-3`. |
|
wd (float): |
|
Weight decay coefficient. Defaults to `1e-7`. |
|
min_seq_len (int): |
|
Minimum input sequence length to be used at training. |
|
max_seq_len (int): |
|
Maximum input sequence length to be used at training. Larger values result in more VRAM usage.""" |
|
|
|
model: str = "align_tts" |
|
|
|
model_args: AlignTTSArgs = field(default_factory=AlignTTSArgs) |
|
phase_start_steps: List[int] = None |
|
|
|
ssim_alpha: float = 1.0 |
|
spec_loss_alpha: float = 1.0 |
|
dur_loss_alpha: float = 1.0 |
|
mdn_alpha: float = 1.0 |
|
|
|
|
|
use_speaker_embedding: bool = False |
|
use_d_vector_file: bool = False |
|
d_vector_file: str = False |
|
|
|
|
|
optimizer: str = "Adam" |
|
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.9, 0.998], "weight_decay": 1e-6}) |
|
lr_scheduler: str = None |
|
lr_scheduler_params: dict = None |
|
lr: float = 1e-4 |
|
grad_clip: float = 5.0 |
|
|
|
|
|
min_seq_len: int = 13 |
|
max_seq_len: int = 200 |
|
r: int = 1 |
|
|
|
|
|
test_sentences: List[str] = field( |
|
default_factory=lambda: [ |
|
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", |
|
"Be a voice, not an echo.", |
|
"I'm sorry Dave. I'm afraid I can't do that.", |
|
"This cake is great. It's so delicious and moist.", |
|
"Prior to November 22, 1963.", |
|
] |
|
) |
|
|