|
from dataclasses import dataclass, field |
|
from typing import Dict |
|
|
|
from TTS.vocoder.configs.shared_configs import BaseGANVocoderConfig |
|
|
|
|
|
@dataclass |
|
class UnivnetConfig(BaseGANVocoderConfig): |
|
"""Defines parameters for UnivNet vocoder. |
|
|
|
Example: |
|
|
|
>>> from TTS.vocoder.configs import UnivNetConfig |
|
>>> config = UnivNetConfig() |
|
|
|
Args: |
|
model (str): |
|
Model name used for selecting the right model at initialization. Defaults to `UnivNet`. |
|
discriminator_model (str): One of the discriminators from `TTS.vocoder.models.*_discriminator`. Defaults to |
|
'UnivNet_discriminator`. |
|
generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is |
|
considered as a generator too. Defaults to `UnivNet_generator`. |
|
generator_model_params (dict): Parameters of the generator model. Defaults to |
|
` |
|
{ |
|
"use_mel": True, |
|
"sample_rate": 22050, |
|
"n_fft": 1024, |
|
"hop_length": 256, |
|
"win_length": 1024, |
|
"n_mels": 80, |
|
"mel_fmin": 0.0, |
|
"mel_fmax": None, |
|
} |
|
` |
|
batch_size (int): |
|
Batch size used at training. Larger values use more memory. Defaults to 32. |
|
seq_len (int): |
|
Audio segment length used at training. Larger values use more memory. Defaults to 8192. |
|
pad_short (int): |
|
Additional padding applied to the audio samples shorter than `seq_len`. Defaults to 0. |
|
use_noise_augment (bool): |
|
enable / disable random noise added to the input waveform. The noise is added after computing the |
|
features. Defaults to True. |
|
use_cache (bool): |
|
enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is |
|
not large enough. Defaults to True. |
|
use_stft_loss (bool): |
|
enable / disable use of STFT loss originally used by ParallelWaveGAN model. Defaults to True. |
|
use_subband_stft (bool): |
|
enable / disable use of subband loss computation originally used by MultiBandMelgan model. Defaults to True. |
|
use_mse_gan_loss (bool): |
|
enable / disable using Mean Squeare Error GAN loss. Defaults to True. |
|
use_hinge_gan_loss (bool): |
|
enable / disable using Hinge GAN loss. You should choose either Hinge or MSE loss for training GAN models. |
|
Defaults to False. |
|
use_feat_match_loss (bool): |
|
enable / disable using Feature Matching loss originally used by MelGAN model. Defaults to True. |
|
use_l1_spec_loss (bool): |
|
enable / disable using L1 spectrogram loss originally used by univnet model. Defaults to False. |
|
stft_loss_params (dict): |
|
STFT loss parameters. Default to |
|
`{ |
|
"n_ffts": [1024, 2048, 512], |
|
"hop_lengths": [120, 240, 50], |
|
"win_lengths": [600, 1200, 240] |
|
}` |
|
l1_spec_loss_params (dict): |
|
L1 spectrogram loss parameters. Default to |
|
`{ |
|
"use_mel": True, |
|
"sample_rate": 22050, |
|
"n_fft": 1024, |
|
"hop_length": 256, |
|
"win_length": 1024, |
|
"n_mels": 80, |
|
"mel_fmin": 0.0, |
|
"mel_fmax": None, |
|
}` |
|
stft_loss_weight (float): STFT loss weight that multiplies the computed loss before summing up the total |
|
model loss. Defaults to 0.5. |
|
subband_stft_loss_weight (float): |
|
Subband STFT loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. |
|
mse_G_loss_weight (float): |
|
MSE generator loss weight that multiplies the computed loss before summing up the total loss. faults to 2.5. |
|
hinge_G_loss_weight (float): |
|
Hinge generator loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. |
|
feat_match_loss_weight (float): |
|
Feature matching loss weight that multiplies the computed loss before summing up the total loss. faults to 108. |
|
l1_spec_loss_weight (float): |
|
L1 spectrogram loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. |
|
""" |
|
|
|
model: str = "univnet" |
|
batch_size: int = 32 |
|
|
|
discriminator_model: str = "univnet_discriminator" |
|
generator_model: str = "univnet_generator" |
|
generator_model_params: Dict = field( |
|
default_factory=lambda: { |
|
"in_channels": 64, |
|
"out_channels": 1, |
|
"hidden_channels": 32, |
|
"cond_channels": 80, |
|
"upsample_factors": [8, 8, 4], |
|
"lvc_layers_each_block": 4, |
|
"lvc_kernel_size": 3, |
|
"kpnet_hidden_channels": 64, |
|
"kpnet_conv_size": 3, |
|
"dropout": 0.0, |
|
} |
|
) |
|
|
|
|
|
use_stft_loss: bool = True |
|
use_subband_stft_loss: bool = False |
|
use_mse_gan_loss: bool = True |
|
use_hinge_gan_loss: bool = False |
|
use_feat_match_loss: bool = False |
|
use_l1_spec_loss: bool = False |
|
|
|
|
|
stft_loss_weight: float = 2.5 |
|
stft_loss_params: Dict = field( |
|
default_factory=lambda: { |
|
"n_ffts": [1024, 2048, 512], |
|
"hop_lengths": [120, 240, 50], |
|
"win_lengths": [600, 1200, 240], |
|
} |
|
) |
|
subband_stft_loss_weight: float = 0 |
|
mse_G_loss_weight: float = 1 |
|
hinge_G_loss_weight: float = 0 |
|
feat_match_loss_weight: float = 0 |
|
l1_spec_loss_weight: float = 0 |
|
l1_spec_loss_params: Dict = field( |
|
default_factory=lambda: { |
|
"use_mel": True, |
|
"sample_rate": 22050, |
|
"n_fft": 1024, |
|
"hop_length": 256, |
|
"win_length": 1024, |
|
"n_mels": 80, |
|
"mel_fmin": 0.0, |
|
"mel_fmax": None, |
|
} |
|
) |
|
|
|
|
|
lr_gen: float = 1e-4 |
|
lr_disc: float = 1e-4 |
|
lr_scheduler_gen: str = None |
|
|
|
lr_scheduler_disc: str = None |
|
|
|
optimizer_params: Dict = field(default_factory=lambda: {"betas": [0.5, 0.9], "weight_decay": 0.0}) |
|
steps_to_start_discriminator: int = 200000 |
|
|
|
def __post_init__(self): |
|
super().__post_init__() |
|
self.generator_model_params["cond_channels"] = self.audio.num_mels |
|
|