|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import math |
|
from typing import List, Optional, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn import LayerNorm |
|
|
|
from TTS.vc.modules.freevc.wavlm.modules import ( |
|
Fp32GroupNorm, |
|
Fp32LayerNorm, |
|
GLU_Linear, |
|
GradMultiply, |
|
MultiheadAttention, |
|
SamePad, |
|
TransposeLast, |
|
get_activation_fn, |
|
init_bert_params, |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def compute_mask_indices( |
|
shape: Tuple[int, int], |
|
padding_mask: Optional[torch.Tensor], |
|
mask_prob: float, |
|
mask_length: int, |
|
mask_type: str = "static", |
|
mask_other: float = 0.0, |
|
min_masks: int = 0, |
|
no_overlap: bool = False, |
|
min_space: int = 0, |
|
) -> np.ndarray: |
|
""" |
|
Computes random mask spans for a given shape |
|
|
|
Args: |
|
shape: the the shape for which to compute masks. |
|
should be of size 2 where first element is batch size and 2nd is timesteps |
|
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements |
|
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by |
|
number of timesteps divided by length of mask span to mask approximately this percentage of all elements. |
|
however due to overlaps, the actual number will be smaller (unless no_overlap is True) |
|
mask_type: how to compute mask lengths |
|
static = fixed size |
|
uniform = sample from uniform distribution [mask_other, mask_length*2] |
|
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element |
|
poisson = sample from possion distribution with lambda = mask length |
|
min_masks: minimum number of masked spans |
|
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping |
|
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans |
|
""" |
|
|
|
bsz, all_sz = shape |
|
mask = np.full((bsz, all_sz), False) |
|
|
|
all_num_mask = int( |
|
|
|
mask_prob * all_sz / float(mask_length) |
|
+ np.random.rand() |
|
) |
|
|
|
all_num_mask = max(min_masks, all_num_mask) |
|
|
|
mask_idcs = [] |
|
for i in range(bsz): |
|
if padding_mask is not None: |
|
sz = all_sz - padding_mask[i].long().sum().item() |
|
num_mask = int( |
|
|
|
mask_prob * sz / float(mask_length) |
|
+ np.random.rand() |
|
) |
|
num_mask = max(min_masks, num_mask) |
|
else: |
|
sz = all_sz |
|
num_mask = all_num_mask |
|
|
|
if mask_type == "static": |
|
lengths = np.full(num_mask, mask_length) |
|
elif mask_type == "uniform": |
|
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) |
|
elif mask_type == "normal": |
|
lengths = np.random.normal(mask_length, mask_other, size=num_mask) |
|
lengths = [max(1, int(round(x))) for x in lengths] |
|
elif mask_type == "poisson": |
|
lengths = np.random.poisson(mask_length, size=num_mask) |
|
lengths = [int(round(x)) for x in lengths] |
|
else: |
|
raise Exception("unknown mask selection " + mask_type) |
|
|
|
if sum(lengths) == 0: |
|
lengths[0] = min(mask_length, sz - 1) |
|
|
|
if no_overlap: |
|
mask_idc = [] |
|
|
|
def arrange(s, e, length, keep_length): |
|
span_start = np.random.randint(s, e - length) |
|
mask_idc.extend(span_start + i for i in range(length)) |
|
|
|
new_parts = [] |
|
if span_start - s - min_space >= keep_length: |
|
new_parts.append((s, span_start - min_space + 1)) |
|
if e - span_start - keep_length - min_space > keep_length: |
|
new_parts.append((span_start + length + min_space, e)) |
|
return new_parts |
|
|
|
parts = [(0, sz)] |
|
min_length = min(lengths) |
|
for length in sorted(lengths, reverse=True): |
|
lens = np.fromiter( |
|
(e - s if e - s >= length + min_space else 0 for s, e in parts), |
|
np.int, |
|
) |
|
l_sum = np.sum(lens) |
|
if l_sum == 0: |
|
break |
|
probs = lens / np.sum(lens) |
|
c = np.random.choice(len(parts), p=probs) |
|
s, e = parts.pop(c) |
|
parts.extend(arrange(s, e, length, min_length)) |
|
mask_idc = np.asarray(mask_idc) |
|
else: |
|
min_len = min(lengths) |
|
if sz - min_len <= num_mask: |
|
min_len = sz - num_mask - 1 |
|
|
|
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) |
|
|
|
mask_idc = np.asarray([mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j])]) |
|
|
|
mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) |
|
|
|
min_len = min([len(m) for m in mask_idcs]) |
|
for i, mask_idc in enumerate(mask_idcs): |
|
if len(mask_idc) > min_len: |
|
mask_idc = np.random.choice(mask_idc, min_len, replace=False) |
|
mask[i, mask_idc] = True |
|
|
|
return mask |
|
|
|
|
|
class WavLMConfig: |
|
def __init__(self, cfg=None): |
|
self.extractor_mode: str = "default" |
|
self.encoder_layers: int = 12 |
|
|
|
self.encoder_embed_dim: int = 768 |
|
self.encoder_ffn_embed_dim: int = 3072 |
|
self.encoder_attention_heads: int = 12 |
|
self.activation_fn: str = "gelu" |
|
|
|
self.layer_norm_first: bool = False |
|
self.conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2" |
|
self.conv_bias: bool = False |
|
self.feature_grad_mult: float = 1.0 |
|
|
|
self.normalize: bool = False |
|
|
|
|
|
self.dropout: float = 0.1 |
|
self.attention_dropout: float = 0.1 |
|
self.activation_dropout: float = 0.0 |
|
self.encoder_layerdrop: float = 0.0 |
|
self.dropout_input: float = 0.0 |
|
self.dropout_features: float = 0.0 |
|
|
|
|
|
self.mask_length: int = 10 |
|
self.mask_prob: float = 0.65 |
|
self.mask_selection: str = "static" |
|
self.mask_other: float = ( |
|
0 |
|
) |
|
self.no_mask_overlap: bool = False |
|
self.mask_min_space: int = 1 |
|
|
|
|
|
self.mask_channel_length: int = 10 |
|
self.mask_channel_prob: float = 0.0 |
|
self.mask_channel_selection: str = "static" |
|
self.mask_channel_other: float = ( |
|
0 |
|
) |
|
self.no_mask_channel_overlap: bool = False |
|
self.mask_channel_min_space: int = 1 |
|
|
|
|
|
self.conv_pos: int = 128 |
|
self.conv_pos_groups: int = 16 |
|
|
|
|
|
self.relative_position_embedding: bool = False |
|
self.num_buckets: int = 320 |
|
self.max_distance: int = 1280 |
|
self.gru_rel_pos: bool = False |
|
|
|
if cfg is not None: |
|
self.update(cfg) |
|
|
|
def update(self, cfg: dict): |
|
self.__dict__.update(cfg) |
|
|
|
|
|
class WavLM(nn.Module): |
|
def __init__( |
|
self, |
|
cfg: WavLMConfig, |
|
) -> None: |
|
super().__init__() |
|
logger.info(f"WavLM Config: {cfg.__dict__}") |
|
|
|
self.cfg = cfg |
|
feature_enc_layers = eval(cfg.conv_feature_layers) |
|
self.embed = feature_enc_layers[-1][0] |
|
|
|
self.feature_extractor = ConvFeatureExtractionModel( |
|
conv_layers=feature_enc_layers, |
|
dropout=0.0, |
|
mode=cfg.extractor_mode, |
|
conv_bias=cfg.conv_bias, |
|
) |
|
|
|
self.post_extract_proj = ( |
|
nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim else None |
|
) |
|
|
|
self.mask_prob = cfg.mask_prob |
|
self.mask_selection = cfg.mask_selection |
|
self.mask_other = cfg.mask_other |
|
self.mask_length = cfg.mask_length |
|
self.no_mask_overlap = cfg.no_mask_overlap |
|
self.mask_min_space = cfg.mask_min_space |
|
|
|
self.mask_channel_prob = cfg.mask_channel_prob |
|
self.mask_channel_selection = cfg.mask_channel_selection |
|
self.mask_channel_other = cfg.mask_channel_other |
|
self.mask_channel_length = cfg.mask_channel_length |
|
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap |
|
self.mask_channel_min_space = cfg.mask_channel_min_space |
|
|
|
self.dropout_input = nn.Dropout(cfg.dropout_input) |
|
self.dropout_features = nn.Dropout(cfg.dropout_features) |
|
|
|
self.feature_grad_mult = cfg.feature_grad_mult |
|
|
|
self.mask_emb = nn.Parameter(torch.FloatTensor(cfg.encoder_embed_dim).uniform_()) |
|
|
|
self.encoder = TransformerEncoder(cfg) |
|
self.layer_norm = LayerNorm(self.embed) |
|
|
|
def apply_mask(self, x, padding_mask): |
|
B, T, C = x.shape |
|
if self.mask_prob > 0: |
|
mask_indices = compute_mask_indices( |
|
(B, T), |
|
padding_mask, |
|
self.mask_prob, |
|
self.mask_length, |
|
self.mask_selection, |
|
self.mask_other, |
|
min_masks=2, |
|
no_overlap=self.no_mask_overlap, |
|
min_space=self.mask_min_space, |
|
) |
|
mask_indices = torch.from_numpy(mask_indices).to(x.device) |
|
x[mask_indices] = self.mask_emb |
|
else: |
|
mask_indices = None |
|
|
|
if self.mask_channel_prob > 0: |
|
mask_channel_indices = compute_mask_indices( |
|
(B, C), |
|
None, |
|
self.mask_channel_prob, |
|
self.mask_channel_length, |
|
self.mask_channel_selection, |
|
self.mask_channel_other, |
|
no_overlap=self.no_mask_channel_overlap, |
|
min_space=self.mask_channel_min_space, |
|
) |
|
mask_channel_indices = torch.from_numpy(mask_channel_indices).to(x.device).unsqueeze(1).expand(-1, T, -1) |
|
x[mask_channel_indices] = 0 |
|
|
|
return x, mask_indices |
|
|
|
def forward_padding_mask( |
|
self, |
|
features: torch.Tensor, |
|
padding_mask: torch.Tensor, |
|
) -> torch.Tensor: |
|
extra = padding_mask.size(1) % features.size(1) |
|
if extra > 0: |
|
padding_mask = padding_mask[:, :-extra] |
|
padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1) |
|
|
|
padding_mask = padding_mask.any(-1) |
|
return padding_mask |
|
|
|
def extract_features( |
|
self, |
|
source: torch.Tensor, |
|
padding_mask: Optional[torch.Tensor] = None, |
|
mask: bool = False, |
|
ret_conv: bool = False, |
|
output_layer: Optional[int] = None, |
|
ret_layer_results: bool = False, |
|
): |
|
if self.feature_grad_mult > 0: |
|
features = self.feature_extractor(source) |
|
if self.feature_grad_mult != 1.0: |
|
features = GradMultiply.apply(features, self.feature_grad_mult) |
|
else: |
|
with torch.no_grad(): |
|
features = self.feature_extractor(source) |
|
|
|
features = features.transpose(1, 2) |
|
features = self.layer_norm(features) |
|
|
|
if padding_mask is not None: |
|
padding_mask = self.forward_padding_mask(features, padding_mask) |
|
|
|
if self.post_extract_proj is not None: |
|
features = self.post_extract_proj(features) |
|
|
|
features = self.dropout_input(features) |
|
|
|
if mask: |
|
x, mask_indices = self.apply_mask(features, padding_mask) |
|
else: |
|
x = features |
|
|
|
|
|
|
|
|
|
|
|
|
|
x, layer_results = self.encoder( |
|
x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1 |
|
) |
|
|
|
res = {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results} |
|
|
|
feature = res["features"] if ret_conv else res["x"] |
|
if ret_layer_results: |
|
feature = (feature, res["layer_results"]) |
|
return feature, res["padding_mask"] |
|
|
|
|
|
class ConvFeatureExtractionModel(nn.Module): |
|
def __init__( |
|
self, |
|
conv_layers: List[Tuple[int, int, int]], |
|
dropout: float = 0.0, |
|
mode: str = "default", |
|
conv_bias: bool = False, |
|
conv_type: str = "default", |
|
): |
|
super().__init__() |
|
|
|
assert mode in {"default", "layer_norm"} |
|
|
|
def block( |
|
n_in, |
|
n_out, |
|
k, |
|
stride, |
|
is_layer_norm=False, |
|
is_group_norm=False, |
|
conv_bias=False, |
|
): |
|
def make_conv(): |
|
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias) |
|
nn.init.kaiming_normal_(conv.weight) |
|
return conv |
|
|
|
assert (is_layer_norm and is_group_norm) == False, "layer norm and group norm are exclusive" |
|
|
|
if is_layer_norm: |
|
return nn.Sequential( |
|
make_conv(), |
|
nn.Dropout(p=dropout), |
|
nn.Sequential( |
|
TransposeLast(), |
|
Fp32LayerNorm(dim, elementwise_affine=True), |
|
TransposeLast(), |
|
), |
|
nn.GELU(), |
|
) |
|
elif is_group_norm: |
|
return nn.Sequential( |
|
make_conv(), |
|
nn.Dropout(p=dropout), |
|
Fp32GroupNorm(dim, dim, affine=True), |
|
nn.GELU(), |
|
) |
|
else: |
|
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU()) |
|
|
|
self.conv_type = conv_type |
|
if self.conv_type == "default": |
|
in_d = 1 |
|
self.conv_layers = nn.ModuleList() |
|
for i, cl in enumerate(conv_layers): |
|
assert len(cl) == 3, "invalid conv definition: " + str(cl) |
|
(dim, k, stride) = cl |
|
|
|
self.conv_layers.append( |
|
block( |
|
in_d, |
|
dim, |
|
k, |
|
stride, |
|
is_layer_norm=mode == "layer_norm", |
|
is_group_norm=mode == "default" and i == 0, |
|
conv_bias=conv_bias, |
|
) |
|
) |
|
in_d = dim |
|
elif self.conv_type == "conv2d": |
|
in_d = 1 |
|
self.conv_layers = nn.ModuleList() |
|
for i, cl in enumerate(conv_layers): |
|
assert len(cl) == 3 |
|
(dim, k, stride) = cl |
|
|
|
self.conv_layers.append(torch.nn.Conv2d(in_d, dim, k, stride)) |
|
self.conv_layers.append(torch.nn.ReLU()) |
|
in_d = dim |
|
elif self.conv_type == "custom": |
|
in_d = 1 |
|
idim = 80 |
|
self.conv_layers = nn.ModuleList() |
|
for i, cl in enumerate(conv_layers): |
|
assert len(cl) == 3 |
|
(dim, k, stride) = cl |
|
self.conv_layers.append(torch.nn.Conv2d(in_d, dim, k, stride, padding=1)) |
|
self.conv_layers.append(torch.nn.LayerNorm([dim, idim])) |
|
self.conv_layers.append(torch.nn.ReLU()) |
|
in_d = dim |
|
if (i + 1) % 2 == 0: |
|
self.conv_layers.append(torch.nn.MaxPool2d(2, stride=2, ceil_mode=True)) |
|
idim = int(math.ceil(idim / 2)) |
|
else: |
|
pass |
|
|
|
def forward(self, x, mask=None): |
|
|
|
x = x.unsqueeze(1) |
|
if self.conv_type == "custom": |
|
for conv in self.conv_layers: |
|
if isinstance(conv, nn.LayerNorm): |
|
x = x.transpose(1, 2) |
|
x = conv(x).transpose(1, 2) |
|
else: |
|
x = conv(x) |
|
x = x.transpose(2, 3).contiguous() |
|
x = x.view(x.size(0), -1, x.size(-1)) |
|
else: |
|
for conv in self.conv_layers: |
|
x = conv(x) |
|
if self.conv_type == "conv2d": |
|
b, c, t, f = x.size() |
|
x = x.transpose(2, 3).contiguous().view(b, c * f, t) |
|
return x |
|
|
|
|
|
class TransformerEncoder(nn.Module): |
|
def __init__(self, args): |
|
super().__init__() |
|
|
|
self.dropout = args.dropout |
|
self.embedding_dim = args.encoder_embed_dim |
|
|
|
self.pos_conv = nn.Conv1d( |
|
self.embedding_dim, |
|
self.embedding_dim, |
|
kernel_size=args.conv_pos, |
|
padding=args.conv_pos // 2, |
|
groups=args.conv_pos_groups, |
|
) |
|
dropout = 0 |
|
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim)) |
|
nn.init.normal_(self.pos_conv.weight, mean=0, std=std) |
|
nn.init.constant_(self.pos_conv.bias, 0) |
|
|
|
self.pos_conv = nn.utils.parametrizations.weight_norm(self.pos_conv, name="weight", dim=2) |
|
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU()) |
|
|
|
if hasattr(args, "relative_position_embedding"): |
|
self.relative_position_embedding = args.relative_position_embedding |
|
self.num_buckets = args.num_buckets |
|
self.max_distance = args.max_distance |
|
else: |
|
self.relative_position_embedding = False |
|
self.num_buckets = 0 |
|
self.max_distance = 0 |
|
|
|
self.layers = nn.ModuleList( |
|
[ |
|
TransformerSentenceEncoderLayer( |
|
embedding_dim=self.embedding_dim, |
|
ffn_embedding_dim=args.encoder_ffn_embed_dim, |
|
num_attention_heads=args.encoder_attention_heads, |
|
dropout=self.dropout, |
|
attention_dropout=args.attention_dropout, |
|
activation_dropout=args.activation_dropout, |
|
activation_fn=args.activation_fn, |
|
layer_norm_first=args.layer_norm_first, |
|
has_relative_attention_bias=(self.relative_position_embedding and i == 0), |
|
num_buckets=self.num_buckets, |
|
max_distance=self.max_distance, |
|
gru_rel_pos=args.gru_rel_pos, |
|
) |
|
for i in range(args.encoder_layers) |
|
] |
|
) |
|
|
|
self.layer_norm_first = args.layer_norm_first |
|
self.layer_norm = LayerNorm(self.embedding_dim) |
|
self.layerdrop = args.encoder_layerdrop |
|
|
|
self.apply(init_bert_params) |
|
|
|
def forward(self, x, padding_mask=None, streaming_mask=None, layer=None): |
|
x, layer_results = self.extract_features(x, padding_mask, streaming_mask, layer) |
|
|
|
if self.layer_norm_first and layer is None: |
|
x = self.layer_norm(x) |
|
|
|
return x, layer_results |
|
|
|
def extract_features(self, x, padding_mask=None, streaming_mask=None, tgt_layer=None): |
|
if padding_mask is not None: |
|
x[padding_mask] = 0 |
|
|
|
x_conv = self.pos_conv(x.transpose(1, 2)) |
|
x_conv = x_conv.transpose(1, 2) |
|
x += x_conv |
|
|
|
if not self.layer_norm_first: |
|
x = self.layer_norm(x) |
|
|
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
layer_results = [] |
|
z = None |
|
if tgt_layer is not None: |
|
layer_results.append((x, z)) |
|
r = None |
|
pos_bias = None |
|
for i, layer in enumerate(self.layers): |
|
dropout_probability = np.random.random() |
|
if not self.training or (dropout_probability > self.layerdrop): |
|
x, z, pos_bias = layer( |
|
x, |
|
self_attn_padding_mask=padding_mask, |
|
need_weights=False, |
|
self_attn_mask=streaming_mask, |
|
pos_bias=pos_bias, |
|
) |
|
if tgt_layer is not None: |
|
layer_results.append((x, z)) |
|
if i == tgt_layer: |
|
r = x |
|
break |
|
|
|
if r is not None: |
|
x = r |
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
return x, layer_results |
|
|
|
|
|
class TransformerSentenceEncoderLayer(nn.Module): |
|
""" |
|
Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained |
|
models. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embedding_dim: float = 768, |
|
ffn_embedding_dim: float = 3072, |
|
num_attention_heads: float = 8, |
|
dropout: float = 0.1, |
|
attention_dropout: float = 0.1, |
|
activation_dropout: float = 0.1, |
|
activation_fn: str = "relu", |
|
layer_norm_first: bool = False, |
|
has_relative_attention_bias: bool = False, |
|
num_buckets: int = 0, |
|
max_distance: int = 0, |
|
rescale_init: bool = False, |
|
gru_rel_pos: bool = False, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.embedding_dim = embedding_dim |
|
self.dropout = dropout |
|
self.activation_dropout = activation_dropout |
|
|
|
|
|
self.activation_name = activation_fn |
|
self.activation_fn = get_activation_fn(activation_fn) |
|
self.self_attn = MultiheadAttention( |
|
self.embedding_dim, |
|
num_attention_heads, |
|
dropout=attention_dropout, |
|
self_attention=True, |
|
has_relative_attention_bias=has_relative_attention_bias, |
|
num_buckets=num_buckets, |
|
max_distance=max_distance, |
|
rescale_init=rescale_init, |
|
gru_rel_pos=gru_rel_pos, |
|
) |
|
|
|
self.dropout1 = nn.Dropout(dropout) |
|
self.dropout2 = nn.Dropout(self.activation_dropout) |
|
self.dropout3 = nn.Dropout(dropout) |
|
|
|
self.layer_norm_first = layer_norm_first |
|
|
|
|
|
self.self_attn_layer_norm = LayerNorm(self.embedding_dim) |
|
|
|
if self.activation_name == "glu": |
|
self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish") |
|
else: |
|
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) |
|
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) |
|
|
|
|
|
self.final_layer_norm = LayerNorm(self.embedding_dim) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
self_attn_mask: torch.Tensor = None, |
|
self_attn_padding_mask: torch.Tensor = None, |
|
need_weights: bool = False, |
|
pos_bias=None, |
|
): |
|
""" |
|
LayerNorm is applied either before or after the self-attention/ffn |
|
modules similar to the original Transformer imlementation. |
|
""" |
|
residual = x |
|
|
|
if self.layer_norm_first: |
|
x = self.self_attn_layer_norm(x) |
|
x, attn, pos_bias = self.self_attn( |
|
query=x, |
|
key=x, |
|
value=x, |
|
key_padding_mask=self_attn_padding_mask, |
|
need_weights=False, |
|
attn_mask=self_attn_mask, |
|
position_bias=pos_bias, |
|
) |
|
x = self.dropout1(x) |
|
x = residual + x |
|
|
|
residual = x |
|
x = self.final_layer_norm(x) |
|
if self.activation_name == "glu": |
|
x = self.fc1(x) |
|
else: |
|
x = self.activation_fn(self.fc1(x)) |
|
x = self.dropout2(x) |
|
x = self.fc2(x) |
|
x = self.dropout3(x) |
|
x = residual + x |
|
else: |
|
x, attn, pos_bias = self.self_attn( |
|
query=x, |
|
key=x, |
|
value=x, |
|
key_padding_mask=self_attn_padding_mask, |
|
need_weights=need_weights, |
|
attn_mask=self_attn_mask, |
|
position_bias=pos_bias, |
|
) |
|
|
|
x = self.dropout1(x) |
|
x = residual + x |
|
|
|
x = self.self_attn_layer_norm(x) |
|
|
|
residual = x |
|
if self.activation_name == "glu": |
|
x = self.fc1(x) |
|
else: |
|
x = self.activation_fn(self.fc1(x)) |
|
x = self.dropout2(x) |
|
x = self.fc2(x) |
|
x = self.dropout3(x) |
|
x = residual + x |
|
x = self.final_layer_norm(x) |
|
|
|
return x, attn, pos_bias |
|
|