|
import torch |
|
import torchaudio |
|
from torch import nn |
|
from torch.nn import Conv1d, ConvTranspose1d |
|
from torch.nn import functional as F |
|
from torch.nn.utils.parametrizations import weight_norm |
|
from torch.nn.utils.parametrize import remove_parametrizations |
|
|
|
from TTS.utils.io import load_fsspec |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
|
|
def get_padding(k, d): |
|
return int((k * d - d) / 2) |
|
|
|
|
|
class ResBlock1(torch.nn.Module): |
|
"""Residual Block Type 1. It has 3 convolutional layers in each convolutional block. |
|
|
|
Network:: |
|
|
|
x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o |
|
|--------------------------------------------------------------------------------------------------| |
|
|
|
|
|
Args: |
|
channels (int): number of hidden channels for the convolutional layers. |
|
kernel_size (int): size of the convolution filter in each layer. |
|
dilations (list): list of dilation value for each conv layer in a block. |
|
""" |
|
|
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): |
|
super().__init__() |
|
self.convs1 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]), |
|
) |
|
), |
|
] |
|
) |
|
|
|
self.convs2 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
] |
|
) |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x (Tensor): input tensor. |
|
Returns: |
|
Tensor: output tensor. |
|
Shapes: |
|
x: [B, C, T] |
|
""" |
|
for c1, c2 in zip(self.convs1, self.convs2): |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
xt = c1(xt) |
|
xt = F.leaky_relu(xt, LRELU_SLOPE) |
|
xt = c2(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_parametrizations(l, "weight") |
|
for l in self.convs2: |
|
remove_parametrizations(l, "weight") |
|
|
|
|
|
class ResBlock2(torch.nn.Module): |
|
"""Residual Block Type 2. It has 1 convolutional layers in each convolutional block. |
|
|
|
Network:: |
|
|
|
x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o |
|
|---------------------------------------------------| |
|
|
|
|
|
Args: |
|
channels (int): number of hidden channels for the convolutional layers. |
|
kernel_size (int): size of the convolution filter in each layer. |
|
dilations (list): list of dilation value for each conv layer in a block. |
|
""" |
|
|
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3)): |
|
super().__init__() |
|
self.convs = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]), |
|
) |
|
), |
|
] |
|
) |
|
|
|
def forward(self, x): |
|
for c in self.convs: |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
xt = c(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs: |
|
remove_parametrizations(l, "weight") |
|
|
|
|
|
class HifiganGenerator(torch.nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
resblock_type, |
|
resblock_dilation_sizes, |
|
resblock_kernel_sizes, |
|
upsample_kernel_sizes, |
|
upsample_initial_channel, |
|
upsample_factors, |
|
inference_padding=5, |
|
cond_channels=0, |
|
conv_pre_weight_norm=True, |
|
conv_post_weight_norm=True, |
|
conv_post_bias=True, |
|
cond_in_each_up_layer=False, |
|
): |
|
r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF) |
|
|
|
Network: |
|
x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o |
|
.. -> zI ---| |
|
resblockN_kNx1 -> zN ---' |
|
|
|
Args: |
|
in_channels (int): number of input tensor channels. |
|
out_channels (int): number of output tensor channels. |
|
resblock_type (str): type of the `ResBlock`. '1' or '2'. |
|
resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`. |
|
resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`. |
|
upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution. |
|
upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2 |
|
for each consecutive upsampling layer. |
|
upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer. |
|
inference_padding (int): constant padding applied to the input at inference time. Defaults to 5. |
|
""" |
|
super().__init__() |
|
self.inference_padding = inference_padding |
|
self.num_kernels = len(resblock_kernel_sizes) |
|
self.num_upsamples = len(upsample_factors) |
|
self.cond_in_each_up_layer = cond_in_each_up_layer |
|
|
|
|
|
self.conv_pre = weight_norm(Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3)) |
|
resblock = ResBlock1 if resblock_type == "1" else ResBlock2 |
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)): |
|
self.ups.append( |
|
weight_norm( |
|
ConvTranspose1d( |
|
upsample_initial_channel // (2**i), |
|
upsample_initial_channel // (2 ** (i + 1)), |
|
k, |
|
u, |
|
padding=(k - u) // 2, |
|
) |
|
) |
|
) |
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = upsample_initial_channel // (2 ** (i + 1)) |
|
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): |
|
self.resblocks.append(resblock(ch, k, d)) |
|
|
|
self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias)) |
|
if cond_channels > 0: |
|
self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1) |
|
|
|
if not conv_pre_weight_norm: |
|
remove_parametrizations(self.conv_pre, "weight") |
|
|
|
if not conv_post_weight_norm: |
|
remove_parametrizations(self.conv_post, "weight") |
|
|
|
if self.cond_in_each_up_layer: |
|
self.conds = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = upsample_initial_channel // (2 ** (i + 1)) |
|
self.conds.append(nn.Conv1d(cond_channels, ch, 1)) |
|
|
|
def forward(self, x, g=None): |
|
""" |
|
Args: |
|
x (Tensor): feature input tensor. |
|
g (Tensor): global conditioning input tensor. |
|
|
|
Returns: |
|
Tensor: output waveform. |
|
|
|
Shapes: |
|
x: [B, C, T] |
|
Tensor: [B, 1, T] |
|
""" |
|
o = self.conv_pre(x) |
|
if hasattr(self, "cond_layer"): |
|
o = o + self.cond_layer(g) |
|
for i in range(self.num_upsamples): |
|
o = F.leaky_relu(o, LRELU_SLOPE) |
|
o = self.ups[i](o) |
|
|
|
if self.cond_in_each_up_layer: |
|
o = o + self.conds[i](g) |
|
|
|
z_sum = None |
|
for j in range(self.num_kernels): |
|
if z_sum is None: |
|
z_sum = self.resblocks[i * self.num_kernels + j](o) |
|
else: |
|
z_sum += self.resblocks[i * self.num_kernels + j](o) |
|
o = z_sum / self.num_kernels |
|
o = F.leaky_relu(o) |
|
o = self.conv_post(o) |
|
o = torch.tanh(o) |
|
return o |
|
|
|
@torch.no_grad() |
|
def inference(self, c): |
|
""" |
|
Args: |
|
x (Tensor): conditioning input tensor. |
|
|
|
Returns: |
|
Tensor: output waveform. |
|
|
|
Shapes: |
|
x: [B, C, T] |
|
Tensor: [B, 1, T] |
|
""" |
|
c = c.to(self.conv_pre.weight.device) |
|
c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate") |
|
return self.forward(c) |
|
|
|
def remove_weight_norm(self): |
|
print("Removing weight norm...") |
|
for l in self.ups: |
|
remove_parametrizations(l, "weight") |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_parametrizations(self.conv_pre, "weight") |
|
remove_parametrizations(self.conv_post, "weight") |
|
|
|
def load_checkpoint( |
|
self, config, checkpoint_path, eval=False, cache=False |
|
): |
|
state = torch.load(checkpoint_path, map_location=torch.device("cpu")) |
|
self.load_state_dict(state["model"]) |
|
if eval: |
|
self.eval() |
|
assert not self.training |
|
self.remove_weight_norm() |
|
|
|
|
|
class SELayer(nn.Module): |
|
def __init__(self, channel, reduction=8): |
|
super(SELayer, self).__init__() |
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
self.fc = nn.Sequential( |
|
nn.Linear(channel, channel // reduction), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(channel // reduction, channel), |
|
nn.Sigmoid(), |
|
) |
|
|
|
def forward(self, x): |
|
b, c, _, _ = x.size() |
|
y = self.avg_pool(x).view(b, c) |
|
y = self.fc(y).view(b, c, 1, 1) |
|
return x * y |
|
|
|
|
|
class SEBasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8): |
|
super(SEBasicBlock, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.se = SELayer(planes, reduction) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.relu(out) |
|
out = self.bn1(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.se(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
return out |
|
|
|
|
|
def set_init_dict(model_dict, checkpoint_state, c): |
|
|
|
for k, v in checkpoint_state.items(): |
|
if k not in model_dict: |
|
print(" | > Layer missing in the model definition: {}".format(k)) |
|
|
|
pretrained_dict = {k: v for k, v in checkpoint_state.items() if k in model_dict} |
|
|
|
pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()} |
|
|
|
if c.has("reinit_layers") and c.reinit_layers is not None: |
|
for reinit_layer_name in c.reinit_layers: |
|
pretrained_dict = {k: v for k, v in pretrained_dict.items() if reinit_layer_name not in k} |
|
|
|
model_dict.update(pretrained_dict) |
|
print(" | > {} / {} layers are restored.".format(len(pretrained_dict), len(model_dict))) |
|
return model_dict |
|
|
|
|
|
class PreEmphasis(nn.Module): |
|
def __init__(self, coefficient=0.97): |
|
super().__init__() |
|
self.coefficient = coefficient |
|
self.register_buffer("filter", torch.FloatTensor([-self.coefficient, 1.0]).unsqueeze(0).unsqueeze(0)) |
|
|
|
def forward(self, x): |
|
assert len(x.size()) == 2 |
|
|
|
x = torch.nn.functional.pad(x.unsqueeze(1), (1, 0), "reflect") |
|
return torch.nn.functional.conv1d(x, self.filter).squeeze(1) |
|
|
|
|
|
class ResNetSpeakerEncoder(nn.Module): |
|
"""This is copied from 🐸TTS to remove it from the dependencies.""" |
|
|
|
|
|
def __init__( |
|
self, |
|
input_dim=64, |
|
proj_dim=512, |
|
layers=[3, 4, 6, 3], |
|
num_filters=[32, 64, 128, 256], |
|
encoder_type="ASP", |
|
log_input=False, |
|
use_torch_spec=False, |
|
audio_config=None, |
|
): |
|
super(ResNetSpeakerEncoder, self).__init__() |
|
|
|
self.encoder_type = encoder_type |
|
self.input_dim = input_dim |
|
self.log_input = log_input |
|
self.use_torch_spec = use_torch_spec |
|
self.audio_config = audio_config |
|
self.proj_dim = proj_dim |
|
|
|
self.conv1 = nn.Conv2d(1, num_filters[0], kernel_size=3, stride=1, padding=1) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.bn1 = nn.BatchNorm2d(num_filters[0]) |
|
|
|
self.inplanes = num_filters[0] |
|
self.layer1 = self.create_layer(SEBasicBlock, num_filters[0], layers[0]) |
|
self.layer2 = self.create_layer(SEBasicBlock, num_filters[1], layers[1], stride=(2, 2)) |
|
self.layer3 = self.create_layer(SEBasicBlock, num_filters[2], layers[2], stride=(2, 2)) |
|
self.layer4 = self.create_layer(SEBasicBlock, num_filters[3], layers[3], stride=(2, 2)) |
|
|
|
self.instancenorm = nn.InstanceNorm1d(input_dim) |
|
|
|
if self.use_torch_spec: |
|
self.torch_spec = torch.nn.Sequential( |
|
PreEmphasis(audio_config["preemphasis"]), |
|
torchaudio.transforms.MelSpectrogram( |
|
sample_rate=audio_config["sample_rate"], |
|
n_fft=audio_config["fft_size"], |
|
win_length=audio_config["win_length"], |
|
hop_length=audio_config["hop_length"], |
|
window_fn=torch.hamming_window, |
|
n_mels=audio_config["num_mels"], |
|
), |
|
) |
|
|
|
else: |
|
self.torch_spec = None |
|
|
|
outmap_size = int(self.input_dim / 8) |
|
|
|
self.attention = nn.Sequential( |
|
nn.Conv1d(num_filters[3] * outmap_size, 128, kernel_size=1), |
|
nn.ReLU(), |
|
nn.BatchNorm1d(128), |
|
nn.Conv1d(128, num_filters[3] * outmap_size, kernel_size=1), |
|
nn.Softmax(dim=2), |
|
) |
|
|
|
if self.encoder_type == "SAP": |
|
out_dim = num_filters[3] * outmap_size |
|
elif self.encoder_type == "ASP": |
|
out_dim = num_filters[3] * outmap_size * 2 |
|
else: |
|
raise ValueError("Undefined encoder") |
|
|
|
self.fc = nn.Linear(out_dim, proj_dim) |
|
|
|
self._init_layers() |
|
|
|
def _init_layers(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def create_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
|
|
def new_parameter(self, *size): |
|
out = nn.Parameter(torch.FloatTensor(*size)) |
|
nn.init.xavier_normal_(out) |
|
return out |
|
|
|
def forward(self, x, l2_norm=False): |
|
"""Forward pass of the model. |
|
|
|
Args: |
|
x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True` |
|
to compute the spectrogram on-the-fly. |
|
l2_norm (bool): Whether to L2-normalize the outputs. |
|
|
|
Shapes: |
|
- x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})` |
|
""" |
|
x.squeeze_(1) |
|
|
|
if self.use_torch_spec: |
|
x = self.torch_spec(x) |
|
|
|
if self.log_input: |
|
x = (x + 1e-6).log() |
|
x = self.instancenorm(x).unsqueeze(1) |
|
|
|
x = self.conv1(x) |
|
x = self.relu(x) |
|
x = self.bn1(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = x.reshape(x.size()[0], -1, x.size()[-1]) |
|
|
|
w = self.attention(x) |
|
|
|
if self.encoder_type == "SAP": |
|
x = torch.sum(x * w, dim=2) |
|
elif self.encoder_type == "ASP": |
|
mu = torch.sum(x * w, dim=2) |
|
sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu**2).clamp(min=1e-5)) |
|
x = torch.cat((mu, sg), 1) |
|
|
|
x = x.view(x.size()[0], -1) |
|
x = self.fc(x) |
|
|
|
if l2_norm: |
|
x = torch.nn.functional.normalize(x, p=2, dim=1) |
|
return x |
|
|
|
def load_checkpoint( |
|
self, |
|
checkpoint_path: str, |
|
eval: bool = False, |
|
use_cuda: bool = False, |
|
criterion=None, |
|
cache=False, |
|
): |
|
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) |
|
try: |
|
self.load_state_dict(state["model"]) |
|
print(" > Model fully restored. ") |
|
except (KeyError, RuntimeError) as error: |
|
|
|
if eval: |
|
raise error |
|
|
|
print(" > Partial model initialization.") |
|
model_dict = self.state_dict() |
|
model_dict = set_init_dict(model_dict, state["model"]) |
|
self.load_state_dict(model_dict) |
|
del model_dict |
|
|
|
|
|
if criterion is not None and "criterion" in state: |
|
try: |
|
criterion.load_state_dict(state["criterion"]) |
|
except (KeyError, RuntimeError) as error: |
|
print(" > Criterion load ignored because of:", error) |
|
|
|
if use_cuda: |
|
self.cuda() |
|
if criterion is not None: |
|
criterion = criterion.cuda() |
|
|
|
if eval: |
|
self.eval() |
|
assert not self.training |
|
|
|
if not eval: |
|
return criterion, state["step"] |
|
return criterion |
|
|
|
|
|
class HifiDecoder(torch.nn.Module): |
|
def __init__( |
|
self, |
|
input_sample_rate=22050, |
|
output_sample_rate=24000, |
|
output_hop_length=256, |
|
ar_mel_length_compression=1024, |
|
decoder_input_dim=1024, |
|
resblock_type_decoder="1", |
|
resblock_dilation_sizes_decoder=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], |
|
resblock_kernel_sizes_decoder=[3, 7, 11], |
|
upsample_rates_decoder=[8, 8, 2, 2], |
|
upsample_initial_channel_decoder=512, |
|
upsample_kernel_sizes_decoder=[16, 16, 4, 4], |
|
d_vector_dim=512, |
|
cond_d_vector_in_each_upsampling_layer=True, |
|
speaker_encoder_audio_config={ |
|
"fft_size": 512, |
|
"win_length": 400, |
|
"hop_length": 160, |
|
"sample_rate": 16000, |
|
"preemphasis": 0.97, |
|
"num_mels": 64, |
|
}, |
|
): |
|
super().__init__() |
|
self.input_sample_rate = input_sample_rate |
|
self.output_sample_rate = output_sample_rate |
|
self.output_hop_length = output_hop_length |
|
self.ar_mel_length_compression = ar_mel_length_compression |
|
self.speaker_encoder_audio_config = speaker_encoder_audio_config |
|
self.waveform_decoder = HifiganGenerator( |
|
decoder_input_dim, |
|
1, |
|
resblock_type_decoder, |
|
resblock_dilation_sizes_decoder, |
|
resblock_kernel_sizes_decoder, |
|
upsample_kernel_sizes_decoder, |
|
upsample_initial_channel_decoder, |
|
upsample_rates_decoder, |
|
inference_padding=0, |
|
cond_channels=d_vector_dim, |
|
conv_pre_weight_norm=False, |
|
conv_post_weight_norm=False, |
|
conv_post_bias=False, |
|
cond_in_each_up_layer=cond_d_vector_in_each_upsampling_layer, |
|
) |
|
self.speaker_encoder = ResNetSpeakerEncoder( |
|
input_dim=64, |
|
proj_dim=512, |
|
log_input=True, |
|
use_torch_spec=True, |
|
audio_config=speaker_encoder_audio_config, |
|
) |
|
|
|
@property |
|
def device(self): |
|
return next(self.parameters()).device |
|
|
|
def forward(self, latents, g=None): |
|
""" |
|
Args: |
|
x (Tensor): feature input tensor (GPT latent). |
|
g (Tensor): global conditioning input tensor. |
|
|
|
Returns: |
|
Tensor: output waveform. |
|
|
|
Shapes: |
|
x: [B, C, T] |
|
Tensor: [B, 1, T] |
|
""" |
|
|
|
z = torch.nn.functional.interpolate( |
|
latents.transpose(1, 2), |
|
scale_factor=[self.ar_mel_length_compression / self.output_hop_length], |
|
mode="linear", |
|
).squeeze(1) |
|
|
|
if self.output_sample_rate != self.input_sample_rate: |
|
z = torch.nn.functional.interpolate( |
|
z, |
|
scale_factor=[self.output_sample_rate / self.input_sample_rate], |
|
mode="linear", |
|
).squeeze(0) |
|
o = self.waveform_decoder(z, g=g) |
|
return o |
|
|
|
@torch.no_grad() |
|
def inference(self, c, g): |
|
""" |
|
Args: |
|
x (Tensor): feature input tensor (GPT latent). |
|
g (Tensor): global conditioning input tensor. |
|
|
|
Returns: |
|
Tensor: output waveform. |
|
|
|
Shapes: |
|
x: [B, C, T] |
|
Tensor: [B, 1, T] |
|
""" |
|
return self.forward(c, g=g) |
|
|
|
def load_checkpoint(self, checkpoint_path, eval=False): |
|
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu")) |
|
|
|
state = state["model"] |
|
states_keys = list(state.keys()) |
|
for key in states_keys: |
|
if "waveform_decoder." not in key and "speaker_encoder." not in key: |
|
del state[key] |
|
|
|
self.load_state_dict(state) |
|
if eval: |
|
self.eval() |
|
assert not self.training |
|
self.waveform_decoder.remove_weight_norm() |
|
|