|
from typing import Callable, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from TTS.tts.layers.delightful_tts.variance_predictor import VariancePredictor |
|
from TTS.tts.utils.helpers import average_over_durations |
|
|
|
|
|
class EnergyAdaptor(nn.Module): |
|
"""Variance Adaptor with an added 1D conv layer. Used to |
|
get energy embeddings. |
|
|
|
Args: |
|
channels_in (int): Number of in channels for conv layers. |
|
channels_out (int): Number of out channels. |
|
kernel_size (int): Size the kernel for the conv layers. |
|
dropout (float): Probability of dropout. |
|
lrelu_slope (float): Slope for the leaky relu. |
|
emb_kernel_size (int): Size the kernel for the pitch embedding. |
|
|
|
Inputs: inputs, mask |
|
- **inputs** (batch, time1, dim): Tensor containing input vector |
|
- **target** (batch, 1, time2): Tensor containing the energy target |
|
- **dr** (batch, time1): Tensor containing aligner durations vector |
|
- **mask** (batch, time1): Tensor containing indices to be masked |
|
Returns: |
|
- **energy prediction** (batch, 1, time1): Tensor produced by energy predictor |
|
- **energy embedding** (batch, channels, time1): Tensor produced energy adaptor |
|
- **average energy target(train only)** (batch, 1, time1): Tensor produced after averaging over durations |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels_in: int, |
|
channels_hidden: int, |
|
channels_out: int, |
|
kernel_size: int, |
|
dropout: float, |
|
lrelu_slope: float, |
|
emb_kernel_size: int, |
|
): |
|
super().__init__() |
|
self.energy_predictor = VariancePredictor( |
|
channels_in=channels_in, |
|
channels=channels_hidden, |
|
channels_out=channels_out, |
|
kernel_size=kernel_size, |
|
p_dropout=dropout, |
|
lrelu_slope=lrelu_slope, |
|
) |
|
self.energy_emb = nn.Conv1d( |
|
1, |
|
channels_hidden, |
|
kernel_size=emb_kernel_size, |
|
padding=int((emb_kernel_size - 1) / 2), |
|
) |
|
|
|
def get_energy_embedding_train( |
|
self, x: torch.Tensor, target: torch.Tensor, dr: torch.IntTensor, mask: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Shapes: |
|
x: :math: `[B, T_src, C]` |
|
target: :math: `[B, 1, T_max2]` |
|
dr: :math: `[B, T_src]` |
|
mask: :math: `[B, T_src]` |
|
""" |
|
energy_pred = self.energy_predictor(x, mask) |
|
energy_pred.unsqueeze_(1) |
|
avg_energy_target = average_over_durations(target, dr) |
|
energy_emb = self.energy_emb(avg_energy_target) |
|
return energy_pred, avg_energy_target, energy_emb |
|
|
|
def get_energy_embedding(self, x: torch.Tensor, mask: torch.Tensor, energy_transform: Callable) -> torch.Tensor: |
|
energy_pred = self.energy_predictor(x, mask) |
|
energy_pred.unsqueeze_(1) |
|
if energy_transform is not None: |
|
energy_pred = energy_transform(energy_pred, (~mask).sum(dim=(1, 2)), self.pitch_mean, self.pitch_std) |
|
energy_emb_pred = self.energy_emb(energy_pred) |
|
return energy_emb_pred, energy_pred |
|
|