|
import logging |
|
import os |
|
import re |
|
from glob import glob |
|
from typing import Dict, List |
|
|
|
import librosa |
|
import numpy as np |
|
import torch |
|
import torchaudio |
|
import tqdm |
|
from encodec.utils import convert_audio |
|
from scipy.special import softmax |
|
from torch.nn import functional as F |
|
|
|
from TTS.tts.layers.bark.hubert.hubert_manager import HubertManager |
|
from TTS.tts.layers.bark.hubert.kmeans_hubert import CustomHubert |
|
from TTS.tts.layers.bark.hubert.tokenizer import HubertTokenizer |
|
from TTS.tts.layers.bark.load_model import clear_cuda_cache, inference_mode |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def _tokenize(tokenizer, text): |
|
return tokenizer.encode(text, add_special_tokens=False) |
|
|
|
|
|
def _detokenize(tokenizer, enc_text): |
|
return tokenizer.decode(enc_text) |
|
|
|
|
|
def _normalize_whitespace(text): |
|
return re.sub(r"\s+", " ", text).strip() |
|
|
|
|
|
def get_voices(extra_voice_dirs: List[str] = []): |
|
dirs = extra_voice_dirs |
|
voices: Dict[str, List[str]] = {} |
|
for d in dirs: |
|
subs = os.listdir(d) |
|
for sub in subs: |
|
subj = os.path.join(d, sub) |
|
if os.path.isdir(subj): |
|
voices[sub] = list(glob(f"{subj}/*.npz")) |
|
|
|
if len(voices[sub]) == 0: |
|
voices[sub] = list(glob(f"{subj}/*.wav")) + list(glob(f"{subj}/*.mp3")) |
|
return voices |
|
|
|
|
|
def load_npz(npz_file): |
|
x_history = np.load(npz_file) |
|
semantic = x_history["semantic_prompt"] |
|
coarse = x_history["coarse_prompt"] |
|
fine = x_history["fine_prompt"] |
|
return semantic, coarse, fine |
|
|
|
|
|
def load_voice(model, voice: str, extra_voice_dirs: List[str] = []): |
|
if voice == "random": |
|
return None, None, None |
|
|
|
voices = get_voices(extra_voice_dirs) |
|
paths = voices[voice] |
|
|
|
|
|
if len(paths) > 1: |
|
raise ValueError(f"Voice {voice} has multiple paths: {paths}") |
|
|
|
try: |
|
path = voices[voice] |
|
except KeyError as e: |
|
raise KeyError(f"Voice {voice} not found in {extra_voice_dirs}") from e |
|
|
|
if len(paths) == 1 and paths[0].endswith(".npz"): |
|
return load_npz(path[0]) |
|
|
|
audio_path = paths[0] |
|
|
|
output_path = os.path.splitext(audio_path)[0] + ".npz" |
|
generate_voice(audio=audio_path, model=model, output_path=output_path) |
|
return load_voice(model, voice, extra_voice_dirs) |
|
|
|
|
|
def zero_crossing_rate(audio, frame_length=1024, hop_length=512): |
|
zero_crossings = np.sum(np.abs(np.diff(np.sign(audio))) / 2) |
|
total_frames = 1 + int((len(audio) - frame_length) / hop_length) |
|
return zero_crossings / total_frames |
|
|
|
|
|
def compute_spectral_contrast(audio_data, sample_rate, n_bands=6, fmin=200.0): |
|
spectral_contrast = librosa.feature.spectral_contrast(y=audio_data, sr=sample_rate, n_bands=n_bands, fmin=fmin) |
|
return np.mean(spectral_contrast) |
|
|
|
|
|
def compute_average_bass_energy(audio_data, sample_rate, max_bass_freq=250): |
|
stft = librosa.stft(audio_data) |
|
power_spectrogram = np.abs(stft) ** 2 |
|
frequencies = librosa.fft_frequencies(sr=sample_rate, n_fft=stft.shape[0]) |
|
bass_mask = frequencies <= max_bass_freq |
|
bass_energy = power_spectrogram[np.ix_(bass_mask, np.arange(power_spectrogram.shape[1]))].mean() |
|
return bass_energy |
|
|
|
|
|
def generate_voice( |
|
audio, |
|
model, |
|
output_path, |
|
): |
|
"""Generate a new voice from a given audio and text prompt. |
|
|
|
Args: |
|
audio (np.ndarray): The audio to use as a base for the new voice. |
|
text (str): Transcription of the audio you are clonning. |
|
model (BarkModel): The BarkModel to use for generating the new voice. |
|
output_path (str): The path to save the generated voice to. |
|
""" |
|
if isinstance(audio, str): |
|
audio, sr = torchaudio.load(audio) |
|
audio = convert_audio(audio, sr, model.config.sample_rate, model.encodec.channels) |
|
audio = audio.unsqueeze(0).to(model.device) |
|
|
|
with torch.no_grad(): |
|
encoded_frames = model.encodec.encode(audio) |
|
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze() |
|
|
|
|
|
codes = codes.cpu().numpy() |
|
|
|
|
|
|
|
hubert_manager = HubertManager() |
|
|
|
hubert_manager.make_sure_tokenizer_installed(model_path=model.config.LOCAL_MODEL_PATHS["hubert_tokenizer"]) |
|
|
|
hubert_model = CustomHubert(checkpoint_path=model.config.LOCAL_MODEL_PATHS["hubert"]).to(model.device) |
|
|
|
|
|
tokenizer = HubertTokenizer.load_from_checkpoint( |
|
model.config.LOCAL_MODEL_PATHS["hubert_tokenizer"], map_location=model.device |
|
) |
|
|
|
|
|
|
|
semantic_vectors = hubert_model.forward(audio[0], input_sample_hz=model.config.sample_rate) |
|
semantic_tokens = tokenizer.get_token(semantic_vectors) |
|
semantic_tokens = semantic_tokens.cpu().numpy() |
|
|
|
np.savez(output_path, fine_prompt=codes, coarse_prompt=codes[:2, :], semantic_prompt=semantic_tokens) |
|
|
|
|
|
def generate_text_semantic( |
|
text, |
|
model, |
|
history_prompt=None, |
|
temp=0.7, |
|
top_k=None, |
|
top_p=None, |
|
silent=False, |
|
min_eos_p=0.2, |
|
max_gen_duration_s=None, |
|
allow_early_stop=True, |
|
base=None, |
|
use_kv_caching=True, |
|
**kwargs, |
|
): |
|
"""Generate semantic tokens from text. |
|
|
|
Args: |
|
text (str): The text to generate semantic tokens from. |
|
model (BarkModel): The BarkModel to use for generating the semantic tokens. |
|
history_prompt (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a prompt for the generation. |
|
temp (float): The temperature to use for the generation. |
|
top_k (int): The number of top tokens to consider for the generation. |
|
top_p (float): The cumulative probability to consider for the generation. |
|
silent (bool): Whether to silence the tqdm progress bar. |
|
min_eos_p (float): The minimum probability to consider for the end of sentence token. |
|
max_gen_duration_s (float): The maximum duration in seconds to generate for. |
|
allow_early_stop (bool): Whether to allow the generation to stop early. |
|
base (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a base for the generation. |
|
use_kv_caching (bool): Whether to use key-value caching for the generation. |
|
**kwargs: Additional keyword arguments. They are ignored. |
|
|
|
Returns: |
|
np.ndarray: The generated semantic tokens. |
|
""" |
|
assert isinstance(text, str) |
|
text = _normalize_whitespace(text) |
|
assert len(text.strip()) > 0 |
|
if all(v is not None for v in history_prompt) or base is not None: |
|
if history_prompt is not None: |
|
semantic_history = history_prompt[0] |
|
if base is not None: |
|
semantic_history = base[0] |
|
assert ( |
|
isinstance(semantic_history, np.ndarray) |
|
and len(semantic_history.shape) == 1 |
|
and len(semantic_history) > 0 |
|
and semantic_history.min() >= 0 |
|
and semantic_history.max() <= model.config.SEMANTIC_VOCAB_SIZE - 1 |
|
) |
|
else: |
|
semantic_history = None |
|
encoded_text = np.array(_tokenize(model.tokenizer, text)) + model.config.TEXT_ENCODING_OFFSET |
|
if len(encoded_text) > 256: |
|
p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1) |
|
logger.warning(f"warning, text too long, lopping of last {p}%") |
|
encoded_text = encoded_text[:256] |
|
encoded_text = np.pad( |
|
encoded_text, |
|
(0, 256 - len(encoded_text)), |
|
constant_values=model.config.TEXT_PAD_TOKEN, |
|
mode="constant", |
|
) |
|
if semantic_history is not None: |
|
semantic_history = semantic_history.astype(np.int64) |
|
|
|
semantic_history = semantic_history[-256:] |
|
semantic_history = np.pad( |
|
semantic_history, |
|
(0, 256 - len(semantic_history)), |
|
constant_values=model.config.SEMANTIC_PAD_TOKEN, |
|
mode="constant", |
|
) |
|
else: |
|
semantic_history = np.array([model.config.SEMANTIC_PAD_TOKEN] * 256) |
|
x = torch.from_numpy( |
|
np.hstack([encoded_text, semantic_history, np.array([model.config.SEMANTIC_INFER_TOKEN])]).astype(np.int64) |
|
)[None] |
|
assert x.shape[1] == 256 + 256 + 1 |
|
with inference_mode(): |
|
x = x.to(model.device) |
|
n_tot_steps = 768 |
|
|
|
pbar = tqdm.tqdm(disable=silent, total=100) |
|
pbar_state = 0 |
|
tot_generated_duration_s = 0 |
|
kv_cache = None |
|
for n in range(n_tot_steps): |
|
if use_kv_caching and kv_cache is not None: |
|
x_input = x[:, [-1]] |
|
else: |
|
x_input = x |
|
logits, kv_cache = model.semantic_model( |
|
x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache |
|
) |
|
relevant_logits = logits[0, 0, : model.config.SEMANTIC_VOCAB_SIZE] |
|
if allow_early_stop: |
|
relevant_logits = torch.hstack( |
|
(relevant_logits, logits[0, 0, [model.config.SEMANTIC_PAD_TOKEN]]) |
|
) |
|
if top_p is not None: |
|
|
|
logits_device = relevant_logits.device |
|
logits_dtype = relevant_logits.type() |
|
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() |
|
sorted_indices = np.argsort(relevant_logits)[::-1] |
|
sorted_logits = relevant_logits[sorted_indices] |
|
cumulative_probs = np.cumsum(softmax(sorted_logits)) |
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() |
|
sorted_indices_to_remove[0] = False |
|
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf |
|
relevant_logits = torch.from_numpy(relevant_logits) |
|
relevant_logits = relevant_logits.to(logits_device).type(logits_dtype) |
|
if top_k is not None: |
|
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) |
|
relevant_logits[relevant_logits < v[-1]] = -float("Inf") |
|
probs = torch.softmax(relevant_logits / temp, dim=-1) |
|
item_next = torch.multinomial(probs, num_samples=1) |
|
if allow_early_stop and ( |
|
item_next == model.config.SEMANTIC_VOCAB_SIZE or (min_eos_p is not None and probs[-1] >= min_eos_p) |
|
): |
|
|
|
pbar.update(100 - pbar_state) |
|
break |
|
x = torch.cat((x, item_next[None]), dim=1) |
|
tot_generated_duration_s += 1 / model.config.SEMANTIC_RATE_HZ |
|
if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s: |
|
pbar.update(100 - pbar_state) |
|
break |
|
if n == n_tot_steps - 1: |
|
pbar.update(100 - pbar_state) |
|
break |
|
del logits, relevant_logits, probs, item_next |
|
req_pbar_state = np.min([100, int(round(100 * n / n_tot_steps))]) |
|
if req_pbar_state > pbar_state: |
|
pbar.update(req_pbar_state - pbar_state) |
|
pbar_state = req_pbar_state |
|
pbar.close() |
|
out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1 :] |
|
assert all(out >= 0) and all(out < model.config.SEMANTIC_VOCAB_SIZE) |
|
clear_cuda_cache() |
|
return out |
|
|
|
|
|
def _flatten_codebooks(arr, offset_size): |
|
assert len(arr.shape) == 2 |
|
arr = arr.copy() |
|
if offset_size is not None: |
|
for n in range(1, arr.shape[0]): |
|
arr[n, :] += offset_size * n |
|
flat_arr = arr.ravel("F") |
|
return flat_arr |
|
|
|
|
|
def generate_coarse( |
|
x_semantic, |
|
model, |
|
history_prompt=None, |
|
temp=0.7, |
|
top_k=None, |
|
top_p=None, |
|
silent=False, |
|
max_coarse_history=630, |
|
sliding_window_len=60, |
|
base=None, |
|
use_kv_caching=True, |
|
): |
|
"""Generate coarse audio codes from semantic tokens. |
|
|
|
Args: |
|
x_semantic (np.ndarray): The semantic tokens to generate coarse audio codes from. |
|
model (BarkModel): The BarkModel to use for generating the coarse audio codes. |
|
history_prompt (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a prompt for the generation. |
|
temp (float): The temperature to use for the generation. |
|
top_k (int): The number of top tokens to consider for the generation. |
|
top_p (float): The cumulative probability to consider for the generation. |
|
silent (bool): Whether to silence the tqdm progress bar. |
|
max_coarse_history (int): The maximum number of coarse audio codes to use as history. |
|
sliding_window_len (int): The length of the sliding window to use for the generation. |
|
base (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a base for the generation. |
|
use_kv_caching (bool): Whether to use key-value caching for the generation. |
|
|
|
Returns: |
|
np.ndarray: The generated coarse audio codes. |
|
""" |
|
assert ( |
|
isinstance(x_semantic, np.ndarray) |
|
and len(x_semantic.shape) == 1 |
|
and len(x_semantic) > 0 |
|
and x_semantic.min() >= 0 |
|
and x_semantic.max() <= model.config.SEMANTIC_VOCAB_SIZE - 1 |
|
) |
|
assert 60 <= max_coarse_history <= 630 |
|
assert max_coarse_history + sliding_window_len <= 1024 - 256 |
|
semantic_to_coarse_ratio = ( |
|
model.config.COARSE_RATE_HZ / model.config.SEMANTIC_RATE_HZ * model.config.N_COARSE_CODEBOOKS |
|
) |
|
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio)) |
|
if all(v is not None for v in history_prompt) or base is not None: |
|
if history_prompt is not None: |
|
x_history = history_prompt |
|
x_semantic_history = x_history[0] |
|
x_coarse_history = x_history[1] |
|
if base is not None: |
|
x_semantic_history = base[0] |
|
x_coarse_history = base[1] |
|
assert ( |
|
isinstance(x_semantic_history, np.ndarray) |
|
and len(x_semantic_history.shape) == 1 |
|
and len(x_semantic_history) > 0 |
|
and x_semantic_history.min() >= 0 |
|
and x_semantic_history.max() <= model.config.SEMANTIC_VOCAB_SIZE - 1 |
|
and isinstance(x_coarse_history, np.ndarray) |
|
and len(x_coarse_history.shape) == 2 |
|
and x_coarse_history.shape[0] == model.config.N_COARSE_CODEBOOKS |
|
and x_coarse_history.shape[-1] >= 0 |
|
and x_coarse_history.min() >= 0 |
|
and x_coarse_history.max() <= model.config.CODEBOOK_SIZE - 1 |
|
and ( |
|
round(x_coarse_history.shape[-1] / len(x_semantic_history), 1) |
|
== round(semantic_to_coarse_ratio / model.config.N_COARSE_CODEBOOKS, 1) |
|
) |
|
) |
|
x_coarse_history = ( |
|
_flatten_codebooks(x_coarse_history, model.config.CODEBOOK_SIZE) + model.config.SEMANTIC_VOCAB_SIZE |
|
) |
|
|
|
n_semantic_hist_provided = np.min( |
|
[ |
|
max_semantic_history, |
|
len(x_semantic_history) - len(x_semantic_history) % 2, |
|
int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)), |
|
] |
|
) |
|
n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio)) |
|
x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32) |
|
x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32) |
|
|
|
x_coarse_history = x_coarse_history[:-2] |
|
else: |
|
x_semantic_history = np.array([], dtype=np.int32) |
|
x_coarse_history = np.array([], dtype=np.int32) |
|
|
|
n_steps = int( |
|
round( |
|
np.floor(len(x_semantic) * semantic_to_coarse_ratio / model.config.N_COARSE_CODEBOOKS) |
|
* model.config.N_COARSE_CODEBOOKS |
|
) |
|
) |
|
assert n_steps > 0 and n_steps % model.config.N_COARSE_CODEBOOKS == 0 |
|
x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32) |
|
x_coarse = x_coarse_history.astype(np.int32) |
|
base_semantic_idx = len(x_semantic_history) |
|
with inference_mode(): |
|
x_semantic_in = torch.from_numpy(x_semantic)[None].to(model.device) |
|
x_coarse_in = torch.from_numpy(x_coarse)[None].to(model.device) |
|
n_window_steps = int(np.ceil(n_steps / sliding_window_len)) |
|
n_step = 0 |
|
for _ in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent): |
|
semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio)) |
|
|
|
x_in = x_semantic_in[:, np.max([0, semantic_idx - max_semantic_history]) :] |
|
x_in = x_in[:, :256] |
|
x_in = F.pad( |
|
x_in, |
|
(0, 256 - x_in.shape[-1]), |
|
"constant", |
|
model.config.COARSE_SEMANTIC_PAD_TOKEN, |
|
) |
|
x_in = torch.hstack( |
|
[ |
|
x_in, |
|
torch.tensor([model.config.COARSE_INFER_TOKEN])[None].to(model.device), |
|
x_coarse_in[:, -max_coarse_history:], |
|
] |
|
) |
|
kv_cache = None |
|
for _ in range(sliding_window_len): |
|
if n_step >= n_steps: |
|
continue |
|
is_major_step = n_step % model.config.N_COARSE_CODEBOOKS == 0 |
|
|
|
if use_kv_caching and kv_cache is not None: |
|
x_input = x_in[:, [-1]] |
|
else: |
|
x_input = x_in |
|
|
|
logits, kv_cache = model.coarse_model(x_input, use_cache=use_kv_caching, past_kv=kv_cache) |
|
logit_start_idx = ( |
|
model.config.SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * model.config.CODEBOOK_SIZE |
|
) |
|
logit_end_idx = model.config.SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * model.config.CODEBOOK_SIZE |
|
relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx] |
|
if top_p is not None: |
|
|
|
logits_device = relevant_logits.device |
|
logits_dtype = relevant_logits.type() |
|
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() |
|
sorted_indices = np.argsort(relevant_logits)[::-1] |
|
sorted_logits = relevant_logits[sorted_indices] |
|
cumulative_probs = np.cumsum(torch.nn.functional.softmax(sorted_logits)) |
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() |
|
sorted_indices_to_remove[0] = False |
|
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf |
|
relevant_logits = torch.from_numpy(relevant_logits) |
|
relevant_logits = relevant_logits.to(logits_device).type(logits_dtype) |
|
if top_k is not None: |
|
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) |
|
relevant_logits[relevant_logits < v[-1]] = -float("Inf") |
|
probs = torch.nn.functional.softmax(relevant_logits / temp, dim=-1) |
|
item_next = torch.multinomial(probs, num_samples=1) |
|
item_next += logit_start_idx |
|
x_coarse_in = torch.cat((x_coarse_in, item_next[None]), dim=1) |
|
x_in = torch.cat((x_in, item_next[None]), dim=1) |
|
del logits, relevant_logits, probs, item_next |
|
n_step += 1 |
|
del x_in |
|
del x_semantic_in |
|
gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history) :] |
|
del x_coarse_in |
|
assert len(gen_coarse_arr) == n_steps |
|
gen_coarse_audio_arr = ( |
|
gen_coarse_arr.reshape(-1, model.config.N_COARSE_CODEBOOKS).T - model.config.SEMANTIC_VOCAB_SIZE |
|
) |
|
for n in range(1, model.config.N_COARSE_CODEBOOKS): |
|
gen_coarse_audio_arr[n, :] -= n * model.config.CODEBOOK_SIZE |
|
clear_cuda_cache() |
|
return gen_coarse_audio_arr |
|
|
|
|
|
def generate_fine( |
|
x_coarse_gen, |
|
model, |
|
history_prompt=None, |
|
temp=0.5, |
|
silent=True, |
|
base=None, |
|
): |
|
"""Generate full audio codes from coarse audio codes. |
|
|
|
Args: |
|
x_coarse_gen (np.ndarray): The coarse audio codes to generate full audio codes from. |
|
model (BarkModel): The BarkModel to use for generating the full audio codes. |
|
history_prompt (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a prompt for the generation. |
|
temp (float): The temperature to use for the generation. |
|
silent (bool): Whether to silence the tqdm progress bar. |
|
base (tuple): A tuple of (semantic_history, coarse_history, fine_history) to use as a base for the generation. |
|
|
|
Returns: |
|
np.ndarray: The generated full audio codes. |
|
""" |
|
assert ( |
|
isinstance(x_coarse_gen, np.ndarray) |
|
and len(x_coarse_gen.shape) == 2 |
|
and 1 <= x_coarse_gen.shape[0] <= model.config.N_FINE_CODEBOOKS - 1 |
|
and x_coarse_gen.shape[1] > 0 |
|
and x_coarse_gen.min() >= 0 |
|
and x_coarse_gen.max() <= model.config.CODEBOOK_SIZE - 1 |
|
) |
|
if all(v is not None for v in history_prompt) or base is not None: |
|
if history_prompt is not None: |
|
x_fine_history = history_prompt[2] |
|
if base is not None: |
|
x_fine_history = base[2] |
|
assert ( |
|
isinstance(x_fine_history, np.ndarray) |
|
and len(x_fine_history.shape) == 2 |
|
and x_fine_history.shape[0] == model.config.N_FINE_CODEBOOKS |
|
and x_fine_history.shape[1] >= 0 |
|
and x_fine_history.min() >= 0 |
|
and x_fine_history.max() <= model.config.CODEBOOK_SIZE - 1 |
|
) |
|
else: |
|
x_fine_history = None |
|
n_coarse = x_coarse_gen.shape[0] |
|
|
|
in_arr = np.vstack( |
|
[ |
|
x_coarse_gen, |
|
np.zeros((model.config.N_FINE_CODEBOOKS - n_coarse, x_coarse_gen.shape[1])) |
|
+ model.config.CODEBOOK_SIZE, |
|
] |
|
).astype(np.int32) |
|
|
|
if x_fine_history is not None: |
|
x_fine_history = x_fine_history.astype(np.int32) |
|
in_arr = np.hstack( |
|
[ |
|
x_fine_history[:, -512:].astype(np.int32), |
|
in_arr, |
|
] |
|
) |
|
n_history = x_fine_history[:, -512:].shape[1] |
|
else: |
|
n_history = 0 |
|
n_remove_from_end = 0 |
|
|
|
if in_arr.shape[1] < 1024: |
|
n_remove_from_end = 1024 - in_arr.shape[1] |
|
in_arr = np.hstack( |
|
[ |
|
in_arr, |
|
np.zeros((model.config.N_FINE_CODEBOOKS, n_remove_from_end), dtype=np.int32) |
|
+ model.config.CODEBOOK_SIZE, |
|
] |
|
) |
|
|
|
n_loops = np.max([0, int(np.ceil((x_coarse_gen.shape[1] - (1024 - n_history)) / 512))]) + 1 |
|
with inference_mode(): |
|
in_arr = torch.tensor(in_arr.T).to(model.device) |
|
for n in tqdm.tqdm(range(n_loops), disable=silent): |
|
start_idx = np.min([n * 512, in_arr.shape[0] - 1024]) |
|
start_fill_idx = np.min([n_history + n * 512, in_arr.shape[0] - 512]) |
|
rel_start_fill_idx = start_fill_idx - start_idx |
|
in_buffer = in_arr[start_idx : start_idx + 1024, :][None] |
|
for nn in range(n_coarse, model.config.N_FINE_CODEBOOKS): |
|
logits = model.fine_model(nn, in_buffer) |
|
if temp is None: |
|
relevant_logits = logits[0, rel_start_fill_idx:, : model.config.CODEBOOK_SIZE] |
|
codebook_preds = torch.argmax(relevant_logits, -1) |
|
else: |
|
relevant_logits = logits[0, :, : model.config.CODEBOOK_SIZE] / temp |
|
probs = F.softmax(relevant_logits, dim=-1) |
|
codebook_preds = torch.hstack( |
|
[torch.multinomial(probs[n], num_samples=1) for n in range(rel_start_fill_idx, 1024)] |
|
) |
|
in_buffer[0, rel_start_fill_idx:, nn] = codebook_preds |
|
del logits, codebook_preds |
|
|
|
for nn in range(n_coarse, model.config.N_FINE_CODEBOOKS): |
|
in_arr[start_fill_idx : start_fill_idx + (1024 - rel_start_fill_idx), nn] = in_buffer[ |
|
0, rel_start_fill_idx:, nn |
|
] |
|
del in_buffer |
|
gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T |
|
del in_arr |
|
gen_fine_arr = gen_fine_arr[:, n_history:] |
|
if n_remove_from_end > 0: |
|
gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end] |
|
assert gen_fine_arr.shape[-1] == x_coarse_gen.shape[-1] |
|
clear_cuda_cache() |
|
return gen_fine_arr |
|
|
|
|
|
def codec_decode(fine_tokens, model): |
|
"""Turn quantized audio codes into audio array using encodec.""" |
|
arr = torch.from_numpy(fine_tokens)[None] |
|
arr = arr.to(model.device) |
|
arr = arr.transpose(0, 1) |
|
emb = model.encodec.quantizer.decode(arr) |
|
out = model.encodec.decoder(emb) |
|
audio_arr = out.detach().cpu().numpy().squeeze() |
|
return audio_arr |
|
|