|
import argparse |
|
from argparse import RawTextHelpFormatter |
|
|
|
import torch |
|
from tqdm import tqdm |
|
|
|
from TTS.config import load_config |
|
from TTS.tts.datasets import load_tts_samples |
|
from TTS.tts.utils.speakers import SpeakerManager |
|
|
|
|
|
def compute_encoder_accuracy(dataset_items, encoder_manager): |
|
class_name_key = encoder_manager.encoder_config.class_name_key |
|
map_classid_to_classname = getattr(encoder_manager.encoder_config, "map_classid_to_classname", None) |
|
|
|
class_acc_dict = {} |
|
|
|
|
|
for item in tqdm(dataset_items): |
|
class_name = item[class_name_key] |
|
wav_file = item["audio_file"] |
|
|
|
|
|
embedd = encoder_manager.compute_embedding_from_clip(wav_file) |
|
if encoder_manager.encoder_criterion is not None and map_classid_to_classname is not None: |
|
embedding = torch.FloatTensor(embedd).unsqueeze(0) |
|
if encoder_manager.use_cuda: |
|
embedding = embedding.cuda() |
|
|
|
class_id = encoder_manager.encoder_criterion.softmax.inference(embedding).item() |
|
predicted_label = map_classid_to_classname[str(class_id)] |
|
else: |
|
predicted_label = None |
|
|
|
if class_name is not None and predicted_label is not None: |
|
is_equal = int(class_name == predicted_label) |
|
if class_name not in class_acc_dict: |
|
class_acc_dict[class_name] = [is_equal] |
|
else: |
|
class_acc_dict[class_name].append(is_equal) |
|
else: |
|
raise RuntimeError("Error: class_name or/and predicted_label are None") |
|
|
|
acc_avg = 0 |
|
for key, values in class_acc_dict.items(): |
|
acc = sum(values) / len(values) |
|
print("Class", key, "Accuracy:", acc) |
|
acc_avg += acc |
|
|
|
print("Average Accuracy:", acc_avg / len(class_acc_dict)) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser( |
|
description="""Compute the accuracy of the encoder.\n\n""" |
|
""" |
|
Example runs: |
|
python TTS/bin/eval_encoder.py emotion_encoder_model.pth emotion_encoder_config.json dataset_config.json |
|
""", |
|
formatter_class=RawTextHelpFormatter, |
|
) |
|
parser.add_argument("model_path", type=str, help="Path to model checkpoint file.") |
|
parser.add_argument( |
|
"config_path", |
|
type=str, |
|
help="Path to model config file.", |
|
) |
|
|
|
parser.add_argument( |
|
"config_dataset_path", |
|
type=str, |
|
help="Path to dataset config file.", |
|
) |
|
parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True) |
|
parser.add_argument("--eval", type=bool, help="compute eval.", default=True) |
|
|
|
args = parser.parse_args() |
|
|
|
c_dataset = load_config(args.config_dataset_path) |
|
|
|
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=args.eval) |
|
items = meta_data_train + meta_data_eval |
|
|
|
enc_manager = SpeakerManager( |
|
encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda |
|
) |
|
|
|
compute_encoder_accuracy(items, enc_manager) |
|
|