|
from io import BytesIO |
|
from typing import Tuple |
|
|
|
import librosa |
|
import numpy as np |
|
import scipy |
|
import soundfile as sf |
|
from librosa import magphase, pyin |
|
|
|
|
|
|
|
|
|
|
|
def build_mel_basis( |
|
*, |
|
sample_rate: int = None, |
|
fft_size: int = None, |
|
num_mels: int = None, |
|
mel_fmax: int = None, |
|
mel_fmin: int = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
"""Build melspectrogram basis. |
|
|
|
Returns: |
|
np.ndarray: melspectrogram basis. |
|
""" |
|
if mel_fmax is not None: |
|
assert mel_fmax <= sample_rate // 2 |
|
assert mel_fmax - mel_fmin > 0 |
|
return librosa.filters.mel(sr=sample_rate, n_fft=fft_size, n_mels=num_mels, fmin=mel_fmin, fmax=mel_fmax) |
|
|
|
|
|
def millisec_to_length( |
|
*, frame_length_ms: int = None, frame_shift_ms: int = None, sample_rate: int = None, **kwargs |
|
) -> Tuple[int, int]: |
|
"""Compute hop and window length from milliseconds. |
|
|
|
Returns: |
|
Tuple[int, int]: hop length and window length for STFT. |
|
""" |
|
factor = frame_length_ms / frame_shift_ms |
|
assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms" |
|
win_length = int(frame_length_ms / 1000.0 * sample_rate) |
|
hop_length = int(win_length / float(factor)) |
|
return win_length, hop_length |
|
|
|
|
|
def _log(x, base): |
|
if base == 10: |
|
return np.log10(x) |
|
return np.log(x) |
|
|
|
|
|
def _exp(x, base): |
|
if base == 10: |
|
return np.power(10, x) |
|
return np.exp(x) |
|
|
|
|
|
def amp_to_db(*, x: np.ndarray = None, gain: float = 1, base: int = 10, **kwargs) -> np.ndarray: |
|
"""Convert amplitude values to decibels. |
|
|
|
Args: |
|
x (np.ndarray): Amplitude spectrogram. |
|
gain (float): Gain factor. Defaults to 1. |
|
base (int): Logarithm base. Defaults to 10. |
|
|
|
Returns: |
|
np.ndarray: Decibels spectrogram. |
|
""" |
|
assert (x < 0).sum() == 0, " [!] Input values must be non-negative." |
|
return gain * _log(np.maximum(1e-8, x), base) |
|
|
|
|
|
|
|
def db_to_amp(*, x: np.ndarray = None, gain: float = 1, base: int = 10, **kwargs) -> np.ndarray: |
|
"""Convert decibels spectrogram to amplitude spectrogram. |
|
|
|
Args: |
|
x (np.ndarray): Decibels spectrogram. |
|
gain (float): Gain factor. Defaults to 1. |
|
base (int): Logarithm base. Defaults to 10. |
|
|
|
Returns: |
|
np.ndarray: Amplitude spectrogram. |
|
""" |
|
return _exp(x / gain, base) |
|
|
|
|
|
def preemphasis(*, x: np.ndarray, coef: float = 0.97, **kwargs) -> np.ndarray: |
|
"""Apply pre-emphasis to the audio signal. Useful to reduce the correlation between neighbouring signal values. |
|
|
|
Args: |
|
x (np.ndarray): Audio signal. |
|
|
|
Raises: |
|
RuntimeError: Preemphasis coeff is set to 0. |
|
|
|
Returns: |
|
np.ndarray: Decorrelated audio signal. |
|
""" |
|
if coef == 0: |
|
raise RuntimeError(" [!] Preemphasis is set 0.0.") |
|
return scipy.signal.lfilter([1, -coef], [1], x) |
|
|
|
|
|
def deemphasis(*, x: np.ndarray = None, coef: float = 0.97, **kwargs) -> np.ndarray: |
|
"""Reverse pre-emphasis.""" |
|
if coef == 0: |
|
raise RuntimeError(" [!] Preemphasis is set 0.0.") |
|
return scipy.signal.lfilter([1], [1, -coef], x) |
|
|
|
|
|
def spec_to_mel(*, spec: np.ndarray, mel_basis: np.ndarray = None, **kwargs) -> np.ndarray: |
|
"""Convert a full scale linear spectrogram output of a network to a melspectrogram. |
|
|
|
Args: |
|
spec (np.ndarray): Normalized full scale linear spectrogram. |
|
|
|
Shapes: |
|
- spec: :math:`[C, T]` |
|
|
|
Returns: |
|
np.ndarray: Normalized melspectrogram. |
|
""" |
|
return np.dot(mel_basis, spec) |
|
|
|
|
|
def mel_to_spec(*, mel: np.ndarray = None, mel_basis: np.ndarray = None, **kwargs) -> np.ndarray: |
|
"""Convert a melspectrogram to full scale spectrogram.""" |
|
assert (mel < 0).sum() == 0, " [!] Input values must be non-negative." |
|
inv_mel_basis = np.linalg.pinv(mel_basis) |
|
return np.maximum(1e-10, np.dot(inv_mel_basis, mel)) |
|
|
|
|
|
def wav_to_spec(*, wav: np.ndarray = None, **kwargs) -> np.ndarray: |
|
"""Compute a spectrogram from a waveform. |
|
|
|
Args: |
|
wav (np.ndarray): Waveform. Shape :math:`[T_wav,]` |
|
|
|
Returns: |
|
np.ndarray: Spectrogram. Shape :math:`[C, T_spec]`. :math:`T_spec == T_wav / hop_length` |
|
""" |
|
D = stft(y=wav, **kwargs) |
|
S = np.abs(D) |
|
return S.astype(np.float32) |
|
|
|
|
|
def wav_to_mel(*, wav: np.ndarray = None, mel_basis=None, **kwargs) -> np.ndarray: |
|
"""Compute a melspectrogram from a waveform.""" |
|
D = stft(y=wav, **kwargs) |
|
S = spec_to_mel(spec=np.abs(D), mel_basis=mel_basis, **kwargs) |
|
return S.astype(np.float32) |
|
|
|
|
|
def spec_to_wav(*, spec: np.ndarray, power: float = 1.5, **kwargs) -> np.ndarray: |
|
"""Convert a spectrogram to a waveform using Griffi-Lim vocoder.""" |
|
S = spec.copy() |
|
return griffin_lim(spec=S**power, **kwargs) |
|
|
|
|
|
def mel_to_wav(*, mel: np.ndarray = None, power: float = 1.5, **kwargs) -> np.ndarray: |
|
"""Convert a melspectrogram to a waveform using Griffi-Lim vocoder.""" |
|
S = mel.copy() |
|
S = mel_to_spec(mel=S, mel_basis=kwargs["mel_basis"]) |
|
return griffin_lim(spec=S**power, **kwargs) |
|
|
|
|
|
|
|
def stft( |
|
*, |
|
y: np.ndarray = None, |
|
fft_size: int = None, |
|
hop_length: int = None, |
|
win_length: int = None, |
|
pad_mode: str = "reflect", |
|
window: str = "hann", |
|
center: bool = True, |
|
**kwargs, |
|
) -> np.ndarray: |
|
"""Librosa STFT wrapper. |
|
|
|
Check http://librosa.org/doc/main/generated/librosa.stft.html argument details. |
|
|
|
Returns: |
|
np.ndarray: Complex number array. |
|
""" |
|
return librosa.stft( |
|
y=y, |
|
n_fft=fft_size, |
|
hop_length=hop_length, |
|
win_length=win_length, |
|
pad_mode=pad_mode, |
|
window=window, |
|
center=center, |
|
) |
|
|
|
|
|
def istft( |
|
*, |
|
y: np.ndarray = None, |
|
hop_length: int = None, |
|
win_length: int = None, |
|
window: str = "hann", |
|
center: bool = True, |
|
**kwargs, |
|
) -> np.ndarray: |
|
"""Librosa iSTFT wrapper. |
|
|
|
Check http://librosa.org/doc/main/generated/librosa.istft.html argument details. |
|
|
|
Returns: |
|
np.ndarray: Complex number array. |
|
""" |
|
return librosa.istft(y, hop_length=hop_length, win_length=win_length, center=center, window=window) |
|
|
|
|
|
def griffin_lim(*, spec: np.ndarray = None, num_iter=60, **kwargs) -> np.ndarray: |
|
angles = np.exp(2j * np.pi * np.random.rand(*spec.shape)) |
|
S_complex = np.abs(spec).astype(complex) |
|
y = istft(y=S_complex * angles, **kwargs) |
|
if not np.isfinite(y).all(): |
|
print(" [!] Waveform is not finite everywhere. Skipping the GL.") |
|
return np.array([0.0]) |
|
for _ in range(num_iter): |
|
angles = np.exp(1j * np.angle(stft(y=y, **kwargs))) |
|
y = istft(y=S_complex * angles, **kwargs) |
|
return y |
|
|
|
|
|
def compute_stft_paddings( |
|
*, x: np.ndarray = None, hop_length: int = None, pad_two_sides: bool = False, **kwargs |
|
) -> Tuple[int, int]: |
|
"""Compute paddings used by Librosa's STFT. Compute right padding (final frame) or both sides padding |
|
(first and final frames)""" |
|
pad = (x.shape[0] // hop_length + 1) * hop_length - x.shape[0] |
|
if not pad_two_sides: |
|
return 0, pad |
|
return pad // 2, pad // 2 + pad % 2 |
|
|
|
|
|
def compute_f0( |
|
*, |
|
x: np.ndarray = None, |
|
pitch_fmax: float = None, |
|
pitch_fmin: float = None, |
|
hop_length: int = None, |
|
win_length: int = None, |
|
sample_rate: int = None, |
|
stft_pad_mode: str = "reflect", |
|
center: bool = True, |
|
**kwargs, |
|
) -> np.ndarray: |
|
"""Compute pitch (f0) of a waveform using the same parameters used for computing melspectrogram. |
|
|
|
Args: |
|
x (np.ndarray): Waveform. Shape :math:`[T_wav,]` |
|
pitch_fmax (float): Pitch max value. |
|
pitch_fmin (float): Pitch min value. |
|
hop_length (int): Number of frames between STFT columns. |
|
win_length (int): STFT window length. |
|
sample_rate (int): Audio sampling rate. |
|
stft_pad_mode (str): Padding mode for STFT. |
|
center (bool): Centered padding. |
|
|
|
Returns: |
|
np.ndarray: Pitch. Shape :math:`[T_pitch,]`. :math:`T_pitch == T_wav / hop_length` |
|
|
|
Examples: |
|
>>> WAV_FILE = filename = librosa.example('vibeace') |
|
>>> from TTS.config import BaseAudioConfig |
|
>>> from TTS.utils.audio import AudioProcessor |
|
>>> conf = BaseAudioConfig(pitch_fmax=640, pitch_fmin=1) |
|
>>> ap = AudioProcessor(**conf) |
|
>>> wav = ap.load_wav(WAV_FILE, sr=ap.sample_rate)[:5 * ap.sample_rate] |
|
>>> pitch = ap.compute_f0(wav) |
|
""" |
|
assert pitch_fmax is not None, " [!] Set `pitch_fmax` before caling `compute_f0`." |
|
assert pitch_fmin is not None, " [!] Set `pitch_fmin` before caling `compute_f0`." |
|
|
|
f0, voiced_mask, _ = pyin( |
|
y=x.astype(np.double), |
|
fmin=pitch_fmin, |
|
fmax=pitch_fmax, |
|
sr=sample_rate, |
|
frame_length=win_length, |
|
win_length=win_length // 2, |
|
hop_length=hop_length, |
|
pad_mode=stft_pad_mode, |
|
center=center, |
|
n_thresholds=100, |
|
beta_parameters=(2, 18), |
|
boltzmann_parameter=2, |
|
resolution=0.1, |
|
max_transition_rate=35.92, |
|
switch_prob=0.01, |
|
no_trough_prob=0.01, |
|
) |
|
f0[~voiced_mask] = 0.0 |
|
|
|
return f0 |
|
|
|
|
|
def compute_energy(y: np.ndarray, **kwargs) -> np.ndarray: |
|
"""Compute energy of a waveform using the same parameters used for computing melspectrogram. |
|
Args: |
|
x (np.ndarray): Waveform. Shape :math:`[T_wav,]` |
|
Returns: |
|
np.ndarray: energy. Shape :math:`[T_energy,]`. :math:`T_energy == T_wav / hop_length` |
|
Examples: |
|
>>> WAV_FILE = filename = librosa.example('vibeace') |
|
>>> from TTS.config import BaseAudioConfig |
|
>>> from TTS.utils.audio import AudioProcessor |
|
>>> conf = BaseAudioConfig() |
|
>>> ap = AudioProcessor(**conf) |
|
>>> wav = ap.load_wav(WAV_FILE, sr=ap.sample_rate)[:5 * ap.sample_rate] |
|
>>> energy = ap.compute_energy(wav) |
|
""" |
|
x = stft(y=y, **kwargs) |
|
mag, _ = magphase(x) |
|
energy = np.sqrt(np.sum(mag**2, axis=0)) |
|
return energy |
|
|
|
|
|
|
|
def find_endpoint( |
|
*, |
|
wav: np.ndarray = None, |
|
trim_db: float = -40, |
|
sample_rate: int = None, |
|
min_silence_sec=0.8, |
|
gain: float = None, |
|
base: int = None, |
|
**kwargs, |
|
) -> int: |
|
"""Find the last point without silence at the end of a audio signal. |
|
|
|
Args: |
|
wav (np.ndarray): Audio signal. |
|
threshold_db (int, optional): Silence threshold in decibels. Defaults to -40. |
|
min_silence_sec (float, optional): Ignore silences that are shorter then this in secs. Defaults to 0.8. |
|
gian (float, optional): Gain to be used to convert trim_db to trim_amp. Defaults to None. |
|
base (int, optional): Base of the logarithm used to convert trim_db to trim_amp. Defaults to 10. |
|
|
|
Returns: |
|
int: Last point without silence. |
|
""" |
|
window_length = int(sample_rate * min_silence_sec) |
|
hop_length = int(window_length / 4) |
|
threshold = db_to_amp(x=-trim_db, gain=gain, base=base) |
|
for x in range(hop_length, len(wav) - window_length, hop_length): |
|
if np.max(wav[x : x + window_length]) < threshold: |
|
return x + hop_length |
|
return len(wav) |
|
|
|
|
|
def trim_silence( |
|
*, |
|
wav: np.ndarray = None, |
|
sample_rate: int = None, |
|
trim_db: float = None, |
|
win_length: int = None, |
|
hop_length: int = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
"""Trim silent parts with a threshold and 0.01 sec margin""" |
|
margin = int(sample_rate * 0.01) |
|
wav = wav[margin:-margin] |
|
return librosa.effects.trim(wav, top_db=trim_db, frame_length=win_length, hop_length=hop_length)[0] |
|
|
|
|
|
def volume_norm(*, x: np.ndarray = None, coef: float = 0.95, **kwargs) -> np.ndarray: |
|
"""Normalize the volume of an audio signal. |
|
|
|
Args: |
|
x (np.ndarray): Raw waveform. |
|
coef (float): Coefficient to rescale the maximum value. Defaults to 0.95. |
|
|
|
Returns: |
|
np.ndarray: Volume normalized waveform. |
|
""" |
|
return x / abs(x).max() * coef |
|
|
|
|
|
def rms_norm(*, wav: np.ndarray = None, db_level: float = -27.0, **kwargs) -> np.ndarray: |
|
r = 10 ** (db_level / 20) |
|
a = np.sqrt((len(wav) * (r**2)) / np.sum(wav**2)) |
|
return wav * a |
|
|
|
|
|
def rms_volume_norm(*, x: np.ndarray, db_level: float = -27.0, **kwargs) -> np.ndarray: |
|
"""Normalize the volume based on RMS of the signal. |
|
|
|
Args: |
|
x (np.ndarray): Raw waveform. |
|
db_level (float): Target dB level in RMS. Defaults to -27.0. |
|
|
|
Returns: |
|
np.ndarray: RMS normalized waveform. |
|
""" |
|
assert -99 <= db_level <= 0, " [!] db_level should be between -99 and 0" |
|
wav = rms_norm(wav=x, db_level=db_level) |
|
return wav |
|
|
|
|
|
def load_wav(*, filename: str, sample_rate: int = None, resample: bool = False, **kwargs) -> np.ndarray: |
|
"""Read a wav file using Librosa and optionally resample, silence trim, volume normalize. |
|
|
|
Resampling slows down loading the file significantly. Therefore it is recommended to resample the file before. |
|
|
|
Args: |
|
filename (str): Path to the wav file. |
|
sr (int, optional): Sampling rate for resampling. Defaults to None. |
|
resample (bool, optional): Resample the audio file when loading. Slows down the I/O time. Defaults to False. |
|
|
|
Returns: |
|
np.ndarray: Loaded waveform. |
|
""" |
|
if resample: |
|
|
|
x, _ = librosa.load(filename, sr=sample_rate) |
|
else: |
|
|
|
x, _ = sf.read(filename) |
|
return x |
|
|
|
|
|
def save_wav(*, wav: np.ndarray, path: str, sample_rate: int = None, pipe_out=None, **kwargs) -> None: |
|
"""Save float waveform to a file using Scipy. |
|
|
|
Args: |
|
wav (np.ndarray): Waveform with float values in range [-1, 1] to save. |
|
path (str): Path to a output file. |
|
sr (int, optional): Sampling rate used for saving to the file. Defaults to None. |
|
pipe_out (BytesIO, optional): Flag to stdout the generated TTS wav file for shell pipe. |
|
""" |
|
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav)))) |
|
|
|
wav_norm = wav_norm.astype(np.int16) |
|
if pipe_out: |
|
wav_buffer = BytesIO() |
|
scipy.io.wavfile.write(wav_buffer, sample_rate, wav_norm) |
|
wav_buffer.seek(0) |
|
pipe_out.buffer.write(wav_buffer.read()) |
|
scipy.io.wavfile.write(path, sample_rate, wav_norm) |
|
|
|
|
|
def mulaw_encode(*, wav: np.ndarray, mulaw_qc: int, **kwargs) -> np.ndarray: |
|
mu = 2**mulaw_qc - 1 |
|
signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1.0 + mu) |
|
signal = (signal + 1) / 2 * mu + 0.5 |
|
return np.floor( |
|
signal, |
|
) |
|
|
|
|
|
def mulaw_decode(*, wav, mulaw_qc: int, **kwargs) -> np.ndarray: |
|
"""Recovers waveform from quantized values.""" |
|
mu = 2**mulaw_qc - 1 |
|
x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1) |
|
return x |
|
|
|
|
|
def encode_16bits(*, x: np.ndarray, **kwargs) -> np.ndarray: |
|
return np.clip(x * 2**15, -(2**15), 2**15 - 1).astype(np.int16) |
|
|
|
|
|
def quantize(*, x: np.ndarray, quantize_bits: int, **kwargs) -> np.ndarray: |
|
"""Quantize a waveform to a given number of bits. |
|
|
|
Args: |
|
x (np.ndarray): Waveform to quantize. Must be normalized into the range `[-1, 1]`. |
|
quantize_bits (int): Number of quantization bits. |
|
|
|
Returns: |
|
np.ndarray: Quantized waveform. |
|
""" |
|
return (x + 1.0) * (2**quantize_bits - 1) / 2 |
|
|
|
|
|
def dequantize(*, x, quantize_bits, **kwargs) -> np.ndarray: |
|
"""Dequantize a waveform from the given number of bits.""" |
|
return 2 * x / (2**quantize_bits - 1) - 1 |
|
|