|
import random |
|
|
|
import torch |
|
from torch.utils.data import Dataset |
|
|
|
from TTS.encoder.utils.generic_utils import AugmentWAV |
|
|
|
|
|
class EncoderDataset(Dataset): |
|
def __init__( |
|
self, |
|
config, |
|
ap, |
|
meta_data, |
|
voice_len=1.6, |
|
num_classes_in_batch=64, |
|
num_utter_per_class=10, |
|
verbose=False, |
|
augmentation_config=None, |
|
use_torch_spec=None, |
|
): |
|
""" |
|
Args: |
|
ap (TTS.tts.utils.AudioProcessor): audio processor object. |
|
meta_data (list): list of dataset instances. |
|
seq_len (int): voice segment length in seconds. |
|
verbose (bool): print diagnostic information. |
|
""" |
|
super().__init__() |
|
self.config = config |
|
self.items = meta_data |
|
self.sample_rate = ap.sample_rate |
|
self.seq_len = int(voice_len * self.sample_rate) |
|
self.num_utter_per_class = num_utter_per_class |
|
self.ap = ap |
|
self.verbose = verbose |
|
self.use_torch_spec = use_torch_spec |
|
self.classes, self.items = self.__parse_items() |
|
|
|
self.classname_to_classid = {key: i for i, key in enumerate(self.classes)} |
|
|
|
|
|
self.augmentator = None |
|
self.gaussian_augmentation_config = None |
|
if augmentation_config: |
|
self.data_augmentation_p = augmentation_config["p"] |
|
if self.data_augmentation_p and ("additive" in augmentation_config or "rir" in augmentation_config): |
|
self.augmentator = AugmentWAV(ap, augmentation_config) |
|
|
|
if "gaussian" in augmentation_config.keys(): |
|
self.gaussian_augmentation_config = augmentation_config["gaussian"] |
|
|
|
if self.verbose: |
|
print("\n > DataLoader initialization") |
|
print(f" | > Classes per Batch: {num_classes_in_batch}") |
|
print(f" | > Number of instances : {len(self.items)}") |
|
print(f" | > Sequence length: {self.seq_len}") |
|
print(f" | > Num Classes: {len(self.classes)}") |
|
print(f" | > Classes: {self.classes}") |
|
|
|
def load_wav(self, filename): |
|
audio = self.ap.load_wav(filename, sr=self.ap.sample_rate) |
|
return audio |
|
|
|
def __parse_items(self): |
|
class_to_utters = {} |
|
for item in self.items: |
|
path_ = item["audio_file"] |
|
class_name = item[self.config.class_name_key] |
|
if class_name in class_to_utters.keys(): |
|
class_to_utters[class_name].append(path_) |
|
else: |
|
class_to_utters[class_name] = [ |
|
path_, |
|
] |
|
|
|
|
|
class_to_utters = {k: v for (k, v) in class_to_utters.items() if len(v) >= self.num_utter_per_class} |
|
|
|
classes = list(class_to_utters.keys()) |
|
classes.sort() |
|
|
|
new_items = [] |
|
for item in self.items: |
|
path_ = item["audio_file"] |
|
class_name = item["emotion_name"] if self.config.model == "emotion_encoder" else item["speaker_name"] |
|
|
|
if class_name not in classes: |
|
continue |
|
|
|
if self.load_wav(path_).shape[0] - self.seq_len <= 0: |
|
continue |
|
|
|
new_items.append({"wav_file_path": path_, "class_name": class_name}) |
|
|
|
return classes, new_items |
|
|
|
def __len__(self): |
|
return len(self.items) |
|
|
|
def get_num_classes(self): |
|
return len(self.classes) |
|
|
|
def get_class_list(self): |
|
return self.classes |
|
|
|
def set_classes(self, classes): |
|
self.classes = classes |
|
self.classname_to_classid = {key: i for i, key in enumerate(self.classes)} |
|
|
|
def get_map_classid_to_classname(self): |
|
return dict((c_id, c_n) for c_n, c_id in self.classname_to_classid.items()) |
|
|
|
def __getitem__(self, idx): |
|
return self.items[idx] |
|
|
|
def collate_fn(self, batch): |
|
|
|
labels = [] |
|
feats = [] |
|
for item in batch: |
|
utter_path = item["wav_file_path"] |
|
class_name = item["class_name"] |
|
|
|
|
|
class_id = self.classname_to_classid[class_name] |
|
|
|
wav = self.load_wav(utter_path) |
|
offset = random.randint(0, wav.shape[0] - self.seq_len) |
|
wav = wav[offset : offset + self.seq_len] |
|
|
|
if self.augmentator is not None and self.data_augmentation_p: |
|
if random.random() < self.data_augmentation_p: |
|
wav = self.augmentator.apply_one(wav) |
|
|
|
if not self.use_torch_spec: |
|
mel = self.ap.melspectrogram(wav) |
|
feats.append(torch.FloatTensor(mel)) |
|
else: |
|
feats.append(torch.FloatTensor(wav)) |
|
|
|
labels.append(class_id) |
|
|
|
feats = torch.stack(feats) |
|
labels = torch.LongTensor(labels) |
|
|
|
return feats, labels |
|
|