|
import bisect |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
def _pad_data(x, length): |
|
_pad = 0 |
|
assert x.ndim == 1 |
|
return np.pad(x, (0, length - x.shape[0]), mode="constant", constant_values=_pad) |
|
|
|
|
|
def prepare_data(inputs): |
|
max_len = max((len(x) for x in inputs)) |
|
return np.stack([_pad_data(x, max_len) for x in inputs]) |
|
|
|
|
|
def _pad_tensor(x, length): |
|
_pad = 0.0 |
|
assert x.ndim == 2 |
|
x = np.pad(x, [[0, 0], [0, length - x.shape[1]]], mode="constant", constant_values=_pad) |
|
return x |
|
|
|
|
|
def prepare_tensor(inputs, out_steps): |
|
max_len = max((x.shape[1] for x in inputs)) |
|
remainder = max_len % out_steps |
|
pad_len = max_len + (out_steps - remainder) if remainder > 0 else max_len |
|
return np.stack([_pad_tensor(x, pad_len) for x in inputs]) |
|
|
|
|
|
def _pad_stop_target(x: np.ndarray, length: int, pad_val=1) -> np.ndarray: |
|
"""Pad stop target array. |
|
|
|
Args: |
|
x (np.ndarray): Stop target array. |
|
length (int): Length after padding. |
|
pad_val (int, optional): Padding value. Defaults to 1. |
|
|
|
Returns: |
|
np.ndarray: Padded stop target array. |
|
""" |
|
assert x.ndim == 1 |
|
return np.pad(x, (0, length - x.shape[0]), mode="constant", constant_values=pad_val) |
|
|
|
|
|
def prepare_stop_target(inputs, out_steps): |
|
"""Pad row vectors with 1.""" |
|
max_len = max((x.shape[0] for x in inputs)) |
|
remainder = max_len % out_steps |
|
pad_len = max_len + (out_steps - remainder) if remainder > 0 else max_len |
|
return np.stack([_pad_stop_target(x, pad_len) for x in inputs]) |
|
|
|
|
|
def pad_per_step(inputs, pad_len): |
|
return np.pad(inputs, [[0, 0], [0, 0], [0, pad_len]], mode="constant", constant_values=0.0) |
|
|
|
|
|
def get_length_balancer_weights(items: list, num_buckets=10): |
|
|
|
audio_lengths = np.array([item["audio_length"] for item in items]) |
|
|
|
max_length = int(max(audio_lengths)) |
|
min_length = int(min(audio_lengths)) |
|
step = int((max_length - min_length) / num_buckets) + 1 |
|
buckets_classes = [i + step for i in range(min_length, (max_length - step) + num_buckets + 1, step)] |
|
|
|
buckets_names = np.array( |
|
[buckets_classes[bisect.bisect_left(buckets_classes, item["audio_length"])] for item in items] |
|
) |
|
|
|
unique_buckets_names = np.unique(buckets_names).tolist() |
|
bucket_ids = [unique_buckets_names.index(l) for l in buckets_names] |
|
bucket_count = np.array([len(np.where(buckets_names == l)[0]) for l in unique_buckets_names]) |
|
weight_bucket = 1.0 / bucket_count |
|
dataset_samples_weight = np.array([weight_bucket[l] for l in bucket_ids]) |
|
|
|
dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight) |
|
return torch.from_numpy(dataset_samples_weight).float() |
|
|