|
import datetime |
|
import os |
|
|
|
from TTS.utils.io import save_fsspec |
|
|
|
|
|
def save_checkpoint(model, optimizer, model_loss, out_path, current_step): |
|
checkpoint_path = "checkpoint_{}.pth".format(current_step) |
|
checkpoint_path = os.path.join(out_path, checkpoint_path) |
|
print(" | | > Checkpoint saving : {}".format(checkpoint_path)) |
|
|
|
new_state_dict = model.state_dict() |
|
state = { |
|
"model": new_state_dict, |
|
"optimizer": optimizer.state_dict() if optimizer is not None else None, |
|
"step": current_step, |
|
"loss": model_loss, |
|
"date": datetime.date.today().strftime("%B %d, %Y"), |
|
} |
|
save_fsspec(state, checkpoint_path) |
|
|
|
|
|
def save_best_model(model, optimizer, model_loss, best_loss, out_path, current_step): |
|
if model_loss < best_loss: |
|
new_state_dict = model.state_dict() |
|
state = { |
|
"model": new_state_dict, |
|
"optimizer": optimizer.state_dict(), |
|
"step": current_step, |
|
"loss": model_loss, |
|
"date": datetime.date.today().strftime("%B %d, %Y"), |
|
} |
|
best_loss = model_loss |
|
bestmodel_path = "best_model.pth" |
|
bestmodel_path = os.path.join(out_path, bestmodel_path) |
|
print("\n > BEST MODEL ({0:.5f}) : {1:}".format(model_loss, bestmodel_path)) |
|
save_fsspec(state, bestmodel_path) |
|
return best_loss |
|
|