|
import torch.nn as nn |
|
from torch.nn.utils import parametrize |
|
|
|
|
|
class KernelPredictor(nn.Module): |
|
"""Kernel predictor for the location-variable convolutions |
|
|
|
Args: |
|
cond_channels (int): number of channel for the conditioning sequence, |
|
conv_in_channels (int): number of channel for the input sequence, |
|
conv_out_channels (int): number of channel for the output sequence, |
|
conv_layers (int): number of layers |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
cond_channels, |
|
conv_in_channels, |
|
conv_out_channels, |
|
conv_layers, |
|
conv_kernel_size=3, |
|
kpnet_hidden_channels=64, |
|
kpnet_conv_size=3, |
|
kpnet_dropout=0.0, |
|
kpnet_nonlinear_activation="LeakyReLU", |
|
kpnet_nonlinear_activation_params={"negative_slope": 0.1}, |
|
): |
|
super().__init__() |
|
|
|
self.conv_in_channels = conv_in_channels |
|
self.conv_out_channels = conv_out_channels |
|
self.conv_kernel_size = conv_kernel_size |
|
self.conv_layers = conv_layers |
|
|
|
kpnet_kernel_channels = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers |
|
kpnet_bias_channels = conv_out_channels * conv_layers |
|
|
|
self.input_conv = nn.Sequential( |
|
nn.utils.parametrizations.weight_norm( |
|
nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=2, bias=True) |
|
), |
|
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), |
|
) |
|
|
|
self.residual_convs = nn.ModuleList() |
|
padding = (kpnet_conv_size - 1) // 2 |
|
for _ in range(3): |
|
self.residual_convs.append( |
|
nn.Sequential( |
|
nn.Dropout(kpnet_dropout), |
|
nn.utils.parametrizations.weight_norm( |
|
nn.Conv1d( |
|
kpnet_hidden_channels, |
|
kpnet_hidden_channels, |
|
kpnet_conv_size, |
|
padding=padding, |
|
bias=True, |
|
) |
|
), |
|
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), |
|
nn.utils.parametrizations.weight_norm( |
|
nn.Conv1d( |
|
kpnet_hidden_channels, |
|
kpnet_hidden_channels, |
|
kpnet_conv_size, |
|
padding=padding, |
|
bias=True, |
|
) |
|
), |
|
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), |
|
) |
|
) |
|
self.kernel_conv = nn.utils.parametrizations.weight_norm( |
|
nn.Conv1d( |
|
kpnet_hidden_channels, |
|
kpnet_kernel_channels, |
|
kpnet_conv_size, |
|
padding=padding, |
|
bias=True, |
|
) |
|
) |
|
self.bias_conv = nn.utils.parametrizations.weight_norm( |
|
nn.Conv1d( |
|
kpnet_hidden_channels, |
|
kpnet_bias_channels, |
|
kpnet_conv_size, |
|
padding=padding, |
|
bias=True, |
|
) |
|
) |
|
|
|
def forward(self, c): |
|
""" |
|
Args: |
|
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) |
|
""" |
|
batch, _, cond_length = c.shape |
|
c = self.input_conv(c) |
|
for residual_conv in self.residual_convs: |
|
residual_conv.to(c.device) |
|
c = c + residual_conv(c) |
|
k = self.kernel_conv(c) |
|
b = self.bias_conv(c) |
|
kernels = k.contiguous().view( |
|
batch, |
|
self.conv_layers, |
|
self.conv_in_channels, |
|
self.conv_out_channels, |
|
self.conv_kernel_size, |
|
cond_length, |
|
) |
|
bias = b.contiguous().view( |
|
batch, |
|
self.conv_layers, |
|
self.conv_out_channels, |
|
cond_length, |
|
) |
|
|
|
return kernels, bias |
|
|
|
def remove_weight_norm(self): |
|
parametrize.remove_parametrizations(self.input_conv[0], "weight") |
|
parametrize.remove_parametrizations(self.kernel_conv, "weight") |
|
parametrize.remove_parametrizations(self.bias_conv, "weight") |
|
for block in self.residual_convs: |
|
parametrize.remove_parametrizations(block[1], "weight") |
|
parametrize.remove_parametrizations(block[3], "weight") |
|
|