|
from dataclasses import dataclass, field |
|
from typing import List |
|
|
|
from TTS.tts.configs.shared_configs import BaseTTSConfig |
|
from TTS.tts.models.delightful_tts import DelightfulTtsArgs, DelightfulTtsAudioConfig, VocoderConfig |
|
|
|
|
|
@dataclass |
|
class DelightfulTTSConfig(BaseTTSConfig): |
|
""" |
|
Configuration class for the DelightfulTTS model. |
|
|
|
Attributes: |
|
model (str): Name of the model ("delightful_tts"). |
|
audio (DelightfulTtsAudioConfig): Configuration for audio settings. |
|
model_args (DelightfulTtsArgs): Configuration for model arguments. |
|
use_attn_priors (bool): Whether to use attention priors. |
|
vocoder (VocoderConfig): Configuration for the vocoder. |
|
init_discriminator (bool): Whether to initialize the discriminator. |
|
steps_to_start_discriminator (int): Number of steps to start the discriminator. |
|
grad_clip (List[float]): Gradient clipping values. |
|
lr_gen (float): Learning rate for the gan generator. |
|
lr_disc (float): Learning rate for the gan discriminator. |
|
lr_scheduler_gen (str): Name of the learning rate scheduler for the generator. |
|
lr_scheduler_gen_params (dict): Parameters for the learning rate scheduler for the generator. |
|
lr_scheduler_disc (str): Name of the learning rate scheduler for the discriminator. |
|
lr_scheduler_disc_params (dict): Parameters for the learning rate scheduler for the discriminator. |
|
scheduler_after_epoch (bool): Whether to schedule after each epoch. |
|
optimizer (str): Name of the optimizer. |
|
optimizer_params (dict): Parameters for the optimizer. |
|
ssim_loss_alpha (float): Alpha value for the SSIM loss. |
|
mel_loss_alpha (float): Alpha value for the mel loss. |
|
aligner_loss_alpha (float): Alpha value for the aligner loss. |
|
pitch_loss_alpha (float): Alpha value for the pitch loss. |
|
energy_loss_alpha (float): Alpha value for the energy loss. |
|
u_prosody_loss_alpha (float): Alpha value for the utterance prosody loss. |
|
p_prosody_loss_alpha (float): Alpha value for the phoneme prosody loss. |
|
dur_loss_alpha (float): Alpha value for the duration loss. |
|
char_dur_loss_alpha (float): Alpha value for the character duration loss. |
|
binary_align_loss_alpha (float): Alpha value for the binary alignment loss. |
|
binary_loss_warmup_epochs (int): Number of warm-up epochs for the binary loss. |
|
disc_loss_alpha (float): Alpha value for the discriminator loss. |
|
gen_loss_alpha (float): Alpha value for the generator loss. |
|
feat_loss_alpha (float): Alpha value for the feature loss. |
|
vocoder_mel_loss_alpha (float): Alpha value for the vocoder mel loss. |
|
multi_scale_stft_loss_alpha (float): Alpha value for the multi-scale STFT loss. |
|
multi_scale_stft_loss_params (dict): Parameters for the multi-scale STFT loss. |
|
return_wav (bool): Whether to return audio waveforms. |
|
use_weighted_sampler (bool): Whether to use a weighted sampler. |
|
weighted_sampler_attrs (dict): Attributes for the weighted sampler. |
|
weighted_sampler_multipliers (dict): Multipliers for the weighted sampler. |
|
r (int): Value for the `r` override. |
|
compute_f0 (bool): Whether to compute F0 values. |
|
f0_cache_path (str): Path to the F0 cache. |
|
attn_prior_cache_path (str): Path to the attention prior cache. |
|
num_speakers (int): Number of speakers. |
|
use_speaker_embedding (bool): Whether to use speaker embedding. |
|
speakers_file (str): Path to the speaker file. |
|
speaker_embedding_channels (int): Number of channels for the speaker embedding. |
|
language_ids_file (str): Path to the language IDs file. |
|
""" |
|
|
|
model: str = "delightful_tts" |
|
|
|
|
|
audio: DelightfulTtsAudioConfig = field(default_factory=DelightfulTtsAudioConfig) |
|
model_args: DelightfulTtsArgs = field(default_factory=DelightfulTtsArgs) |
|
use_attn_priors: bool = True |
|
|
|
|
|
vocoder: VocoderConfig = field(default_factory=VocoderConfig) |
|
init_discriminator: bool = True |
|
|
|
|
|
steps_to_start_discriminator: int = 200000 |
|
grad_clip: List[float] = field(default_factory=lambda: [1000, 1000]) |
|
lr_gen: float = 0.0002 |
|
lr_disc: float = 0.0002 |
|
lr_scheduler_gen: str = "ExponentialLR" |
|
lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) |
|
lr_scheduler_disc: str = "ExponentialLR" |
|
lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) |
|
scheduler_after_epoch: bool = True |
|
optimizer: str = "AdamW" |
|
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01}) |
|
|
|
|
|
ssim_loss_alpha: float = 1.0 |
|
mel_loss_alpha: float = 1.0 |
|
aligner_loss_alpha: float = 1.0 |
|
pitch_loss_alpha: float = 1.0 |
|
energy_loss_alpha: float = 1.0 |
|
u_prosody_loss_alpha: float = 0.5 |
|
p_prosody_loss_alpha: float = 0.5 |
|
dur_loss_alpha: float = 1.0 |
|
char_dur_loss_alpha: float = 0.01 |
|
binary_align_loss_alpha: float = 0.1 |
|
binary_loss_warmup_epochs: int = 10 |
|
|
|
|
|
disc_loss_alpha: float = 1.0 |
|
gen_loss_alpha: float = 1.0 |
|
feat_loss_alpha: float = 1.0 |
|
vocoder_mel_loss_alpha: float = 10.0 |
|
multi_scale_stft_loss_alpha: float = 2.5 |
|
multi_scale_stft_loss_params: dict = field( |
|
default_factory=lambda: { |
|
"n_ffts": [1024, 2048, 512], |
|
"hop_lengths": [120, 240, 50], |
|
"win_lengths": [600, 1200, 240], |
|
} |
|
) |
|
|
|
|
|
return_wav: bool = True |
|
use_weighted_sampler: bool = False |
|
weighted_sampler_attrs: dict = field(default_factory=lambda: {}) |
|
weighted_sampler_multipliers: dict = field(default_factory=lambda: {}) |
|
|
|
|
|
r: int = 1 |
|
|
|
|
|
compute_f0: bool = True |
|
f0_cache_path: str = None |
|
attn_prior_cache_path: str = None |
|
|
|
|
|
|
|
num_speakers: int = 0 |
|
use_speaker_embedding: bool = False |
|
speakers_file: str = None |
|
speaker_embedding_channels: int = 256 |
|
language_ids_file: str = None |
|
use_language_embedding: bool = False |
|
|
|
|
|
use_d_vector_file: bool = False |
|
d_vector_file: str = None |
|
d_vector_dim: int = None |
|
|
|
|
|
test_sentences: List[List[str]] = field( |
|
default_factory=lambda: [ |
|
["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."], |
|
["Be a voice, not an echo."], |
|
["I'm sorry Dave. I'm afraid I can't do that."], |
|
["This cake is great. It's so delicious and moist."], |
|
["Prior to November 22, 1963."], |
|
] |
|
) |
|
|
|
def __post_init__(self): |
|
|
|
if self.num_speakers > 0: |
|
self.model_args.num_speakers = self.num_speakers |
|
|
|
|
|
if self.use_speaker_embedding: |
|
self.model_args.use_speaker_embedding = True |
|
if self.speakers_file: |
|
self.model_args.speakers_file = self.speakers_file |
|
|
|
|
|
if self.use_d_vector_file: |
|
self.model_args.use_d_vector_file = True |
|
if self.d_vector_dim is not None and self.d_vector_dim > 0: |
|
self.model_args.d_vector_dim = self.d_vector_dim |
|
if self.d_vector_file: |
|
self.model_args.d_vector_file = self.d_vector_file |
|
|