|
import numpy as np |
|
import torch |
|
from scipy.stats import betabinom |
|
from torch.nn import functional as F |
|
|
|
try: |
|
from TTS.tts.utils.monotonic_align.core import maximum_path_c |
|
|
|
CYTHON = True |
|
except ModuleNotFoundError: |
|
CYTHON = False |
|
|
|
|
|
class StandardScaler: |
|
"""StandardScaler for mean-scale normalization with the given mean and scale values.""" |
|
|
|
def __init__(self, mean: np.ndarray = None, scale: np.ndarray = None) -> None: |
|
self.mean_ = mean |
|
self.scale_ = scale |
|
|
|
def set_stats(self, mean, scale): |
|
self.mean_ = mean |
|
self.scale_ = scale |
|
|
|
def reset_stats(self): |
|
delattr(self, "mean_") |
|
delattr(self, "scale_") |
|
|
|
def transform(self, X): |
|
X = np.asarray(X) |
|
X -= self.mean_ |
|
X /= self.scale_ |
|
return X |
|
|
|
def inverse_transform(self, X): |
|
X = np.asarray(X) |
|
X *= self.scale_ |
|
X += self.mean_ |
|
return X |
|
|
|
|
|
|
|
def sequence_mask(sequence_length, max_len=None): |
|
"""Create a sequence mask for filtering padding in a sequence tensor. |
|
|
|
Args: |
|
sequence_length (torch.tensor): Sequence lengths. |
|
max_len (int, Optional): Maximum sequence length. Defaults to None. |
|
|
|
Shapes: |
|
- mask: :math:`[B, T_max]` |
|
""" |
|
if max_len is None: |
|
max_len = sequence_length.max() |
|
seq_range = torch.arange(max_len, dtype=sequence_length.dtype, device=sequence_length.device) |
|
|
|
return seq_range.unsqueeze(0) < sequence_length.unsqueeze(1) |
|
|
|
|
|
def segment(x: torch.tensor, segment_indices: torch.tensor, segment_size=4, pad_short=False): |
|
"""Segment each sample in a batch based on the provided segment indices |
|
|
|
Args: |
|
x (torch.tensor): Input tensor. |
|
segment_indices (torch.tensor): Segment indices. |
|
segment_size (int): Expected output segment size. |
|
pad_short (bool): Pad the end of input tensor with zeros if shorter than the segment size. |
|
""" |
|
|
|
if pad_short and x.shape[-1] < segment_size: |
|
x = torch.nn.functional.pad(x, (0, segment_size - x.size(2))) |
|
|
|
segments = torch.zeros_like(x[:, :, :segment_size]) |
|
|
|
for i in range(x.size(0)): |
|
index_start = segment_indices[i] |
|
index_end = index_start + segment_size |
|
x_i = x[i] |
|
if pad_short and index_end >= x.size(2): |
|
|
|
x_i = torch.nn.functional.pad(x_i, (0, (index_end + 1) - x.size(2))) |
|
segments[i] = x_i[:, index_start:index_end] |
|
return segments |
|
|
|
|
|
def rand_segments( |
|
x: torch.tensor, x_lengths: torch.tensor = None, segment_size=4, let_short_samples=False, pad_short=False |
|
): |
|
"""Create random segments based on the input lengths. |
|
|
|
Args: |
|
x (torch.tensor): Input tensor. |
|
x_lengths (torch.tensor): Input lengths. |
|
segment_size (int): Expected output segment size. |
|
let_short_samples (bool): Allow shorter samples than the segment size. |
|
pad_short (bool): Pad the end of input tensor with zeros if shorter than the segment size. |
|
|
|
Shapes: |
|
- x: :math:`[B, C, T]` |
|
- x_lengths: :math:`[B]` |
|
""" |
|
_x_lenghts = x_lengths.clone() |
|
B, _, T = x.size() |
|
if pad_short: |
|
if T < segment_size: |
|
x = torch.nn.functional.pad(x, (0, segment_size - T)) |
|
T = segment_size |
|
if _x_lenghts is None: |
|
_x_lenghts = T |
|
len_diff = _x_lenghts - segment_size |
|
if let_short_samples: |
|
_x_lenghts[len_diff < 0] = segment_size |
|
len_diff = _x_lenghts - segment_size |
|
else: |
|
assert all( |
|
len_diff > 0 |
|
), f" [!] At least one sample is shorter than the segment size ({segment_size}). \n {_x_lenghts}" |
|
segment_indices = (torch.rand([B]).type_as(x) * (len_diff + 1)).long() |
|
ret = segment(x, segment_indices, segment_size, pad_short=pad_short) |
|
return ret, segment_indices |
|
|
|
|
|
def average_over_durations(values, durs): |
|
"""Average values over durations. |
|
|
|
Shapes: |
|
- values: :math:`[B, 1, T_de]` |
|
- durs: :math:`[B, T_en]` |
|
- avg: :math:`[B, 1, T_en]` |
|
""" |
|
durs_cums_ends = torch.cumsum(durs, dim=1).long() |
|
durs_cums_starts = torch.nn.functional.pad(durs_cums_ends[:, :-1], (1, 0)) |
|
values_nonzero_cums = torch.nn.functional.pad(torch.cumsum(values != 0.0, dim=2), (1, 0)) |
|
values_cums = torch.nn.functional.pad(torch.cumsum(values, dim=2), (1, 0)) |
|
|
|
bs, l = durs_cums_ends.size() |
|
n_formants = values.size(1) |
|
dcs = durs_cums_starts[:, None, :].expand(bs, n_formants, l) |
|
dce = durs_cums_ends[:, None, :].expand(bs, n_formants, l) |
|
|
|
values_sums = (torch.gather(values_cums, 2, dce) - torch.gather(values_cums, 2, dcs)).float() |
|
values_nelems = (torch.gather(values_nonzero_cums, 2, dce) - torch.gather(values_nonzero_cums, 2, dcs)).float() |
|
|
|
avg = torch.where(values_nelems == 0.0, values_nelems, values_sums / values_nelems) |
|
return avg |
|
|
|
|
|
def convert_pad_shape(pad_shape): |
|
l = pad_shape[::-1] |
|
pad_shape = [item for sublist in l for item in sublist] |
|
return pad_shape |
|
|
|
|
|
def generate_path(duration, mask): |
|
""" |
|
Shapes: |
|
- duration: :math:`[B, T_en]` |
|
- mask: :math:'[B, T_en, T_de]` |
|
- path: :math:`[B, T_en, T_de]` |
|
""" |
|
b, t_x, t_y = mask.shape |
|
cum_duration = torch.cumsum(duration, 1) |
|
|
|
cum_duration_flat = cum_duration.view(b * t_x) |
|
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) |
|
path = path.view(b, t_x, t_y) |
|
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] |
|
path = path * mask |
|
return path |
|
|
|
|
|
def maximum_path(value, mask): |
|
if CYTHON: |
|
return maximum_path_cython(value, mask) |
|
return maximum_path_numpy(value, mask) |
|
|
|
|
|
def maximum_path_cython(value, mask): |
|
"""Cython optimised version. |
|
Shapes: |
|
- value: :math:`[B, T_en, T_de]` |
|
- mask: :math:`[B, T_en, T_de]` |
|
""" |
|
value = value * mask |
|
device = value.device |
|
dtype = value.dtype |
|
value = value.data.cpu().numpy().astype(np.float32) |
|
path = np.zeros_like(value).astype(np.int32) |
|
mask = mask.data.cpu().numpy() |
|
|
|
t_x_max = mask.sum(1)[:, 0].astype(np.int32) |
|
t_y_max = mask.sum(2)[:, 0].astype(np.int32) |
|
maximum_path_c(path, value, t_x_max, t_y_max) |
|
return torch.from_numpy(path).to(device=device, dtype=dtype) |
|
|
|
|
|
def maximum_path_numpy(value, mask, max_neg_val=None): |
|
""" |
|
Monotonic alignment search algorithm |
|
Numpy-friendly version. It's about 4 times faster than torch version. |
|
value: [b, t_x, t_y] |
|
mask: [b, t_x, t_y] |
|
""" |
|
if max_neg_val is None: |
|
max_neg_val = -np.inf |
|
value = value * mask |
|
|
|
device = value.device |
|
dtype = value.dtype |
|
value = value.cpu().detach().numpy() |
|
mask = mask.cpu().detach().numpy().astype(bool) |
|
|
|
b, t_x, t_y = value.shape |
|
direction = np.zeros(value.shape, dtype=np.int64) |
|
v = np.zeros((b, t_x), dtype=np.float32) |
|
x_range = np.arange(t_x, dtype=np.float32).reshape(1, -1) |
|
for j in range(t_y): |
|
v0 = np.pad(v, [[0, 0], [1, 0]], mode="constant", constant_values=max_neg_val)[:, :-1] |
|
v1 = v |
|
max_mask = v1 >= v0 |
|
v_max = np.where(max_mask, v1, v0) |
|
direction[:, :, j] = max_mask |
|
|
|
index_mask = x_range <= j |
|
v = np.where(index_mask, v_max + value[:, :, j], max_neg_val) |
|
direction = np.where(mask, direction, 1) |
|
|
|
path = np.zeros(value.shape, dtype=np.float32) |
|
index = mask[:, :, 0].sum(1).astype(np.int64) - 1 |
|
index_range = np.arange(b) |
|
for j in reversed(range(t_y)): |
|
path[index_range, index, j] = 1 |
|
index = index + direction[index_range, index, j] - 1 |
|
path = path * mask.astype(np.float32) |
|
path = torch.from_numpy(path).to(device=device, dtype=dtype) |
|
return path |
|
|
|
|
|
def beta_binomial_prior_distribution(phoneme_count, mel_count, scaling_factor=1.0): |
|
P, M = phoneme_count, mel_count |
|
x = np.arange(0, P) |
|
mel_text_probs = [] |
|
for i in range(1, M + 1): |
|
a, b = scaling_factor * i, scaling_factor * (M + 1 - i) |
|
rv = betabinom(P, a, b) |
|
mel_i_prob = rv.pmf(x) |
|
mel_text_probs.append(mel_i_prob) |
|
return np.array(mel_text_probs) |
|
|
|
|
|
def compute_attn_prior(x_len, y_len, scaling_factor=1.0): |
|
"""Compute attention priors for the alignment network.""" |
|
attn_prior = beta_binomial_prior_distribution( |
|
x_len, |
|
y_len, |
|
scaling_factor, |
|
) |
|
return attn_prior |
|
|