|
from dataclasses import dataclass, field |
|
|
|
from TTS.vocoder.configs.shared_configs import BaseGANVocoderConfig |
|
|
|
|
|
@dataclass |
|
class MultibandMelganConfig(BaseGANVocoderConfig): |
|
"""Defines parameters for MultiBandMelGAN vocoder. |
|
|
|
Example: |
|
|
|
>>> from TTS.vocoder.configs import MultibandMelganConfig |
|
>>> config = MultibandMelganConfig() |
|
|
|
Args: |
|
model (str): |
|
Model name used for selecting the right model at initialization. Defaults to `multiband_melgan`. |
|
discriminator_model (str): One of the discriminators from `TTS.vocoder.models.*_discriminator`. Defaults to |
|
'melgan_multiscale_discriminator`. |
|
discriminator_model_params (dict): The discriminator model parameters. Defaults to |
|
'{ |
|
"base_channels": 16, |
|
"max_channels": 512, |
|
"downsample_factors": [4, 4, 4] |
|
}` |
|
generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is |
|
considered as a generator too. Defaults to `melgan_generator`. |
|
generator_model_param (dict): |
|
The generator model parameters. Defaults to `{"upsample_factors": [8, 4, 2], "num_res_blocks": 4}`. |
|
use_pqmf (bool): |
|
enable / disable PQMF modulation for multi-band training. Defaults to True. |
|
lr_gen (float): |
|
Initial learning rate for the generator model. Defaults to 0.0001. |
|
lr_disc (float): |
|
Initial learning rate for the discriminator model. Defaults to 0.0001. |
|
optimizer (torch.optim.Optimizer): |
|
Optimizer used for the training. Defaults to `AdamW`. |
|
optimizer_params (dict): |
|
Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}` |
|
lr_scheduler_gen (torch.optim.Scheduler): |
|
Learning rate scheduler for the generator. Defaults to `MultiStepLR`. |
|
lr_scheduler_gen_params (dict): |
|
Parameters for the generator learning rate scheduler. Defaults to |
|
`{"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]}`. |
|
lr_scheduler_disc (torch.optim.Scheduler): |
|
Learning rate scheduler for the discriminator. Defaults to `MultiStepLR`. |
|
lr_scheduler_dict_params (dict): |
|
Parameters for the discriminator learning rate scheduler. Defaults to |
|
`{"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]}`. |
|
batch_size (int): |
|
Batch size used at training. Larger values use more memory. Defaults to 16. |
|
seq_len (int): |
|
Audio segment length used at training. Larger values use more memory. Defaults to 8192. |
|
pad_short (int): |
|
Additional padding applied to the audio samples shorter than `seq_len`. Defaults to 0. |
|
use_noise_augment (bool): |
|
enable / disable random noise added to the input waveform. The noise is added after computing the |
|
features. Defaults to True. |
|
use_cache (bool): |
|
enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is |
|
not large enough. Defaults to True. |
|
steps_to_start_discriminator (int): |
|
Number of steps required to start training the discriminator. Defaults to 0. |
|
use_stft_loss (bool):` |
|
enable / disable use of STFT loss originally used by ParallelWaveGAN model. Defaults to True. |
|
use_subband_stft (bool): |
|
enable / disable use of subband loss computation originally used by MultiBandMelgan model. Defaults to True. |
|
use_mse_gan_loss (bool): |
|
enable / disable using Mean Squeare Error GAN loss. Defaults to True. |
|
use_hinge_gan_loss (bool): |
|
enable / disable using Hinge GAN loss. You should choose either Hinge or MSE loss for training GAN models. |
|
Defaults to False. |
|
use_feat_match_loss (bool): |
|
enable / disable using Feature Matching loss originally used by MelGAN model. Defaults to True. |
|
use_l1_spec_loss (bool): |
|
enable / disable using L1 spectrogram loss originally used by HifiGAN model. Defaults to False. |
|
stft_loss_params (dict): STFT loss parameters. Default to |
|
`{"n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240]}` |
|
stft_loss_weight (float): STFT loss weight that multiplies the computed loss before summing up the total |
|
model loss. Defaults to 0.5. |
|
subband_stft_loss_weight (float): |
|
Subband STFT loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. |
|
mse_G_loss_weight (float): |
|
MSE generator loss weight that multiplies the computed loss before summing up the total loss. faults to 2.5. |
|
hinge_G_loss_weight (float): |
|
Hinge generator loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. |
|
feat_match_loss_weight (float): |
|
Feature matching loss weight that multiplies the computed loss before summing up the total loss. faults to 108. |
|
l1_spec_loss_weight (float): |
|
L1 spectrogram loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. |
|
""" |
|
|
|
model: str = "multiband_melgan" |
|
|
|
|
|
discriminator_model: str = "melgan_multiscale_discriminator" |
|
discriminator_model_params: dict = field( |
|
default_factory=lambda: {"base_channels": 16, "max_channels": 512, "downsample_factors": [4, 4, 4]} |
|
) |
|
generator_model: str = "multiband_melgan_generator" |
|
generator_model_params: dict = field(default_factory=lambda: {"upsample_factors": [8, 4, 2], "num_res_blocks": 4}) |
|
use_pqmf: bool = True |
|
|
|
|
|
lr_gen: float = 0.0001 |
|
lr_disc: float = 0.0001 |
|
optimizer: str = "AdamW" |
|
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "weight_decay": 0.0}) |
|
lr_scheduler_gen: str = "MultiStepLR" |
|
lr_scheduler_gen_params: dict = field( |
|
default_factory=lambda: {"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]} |
|
) |
|
lr_scheduler_disc: str = "MultiStepLR" |
|
lr_scheduler_disc_params: dict = field( |
|
default_factory=lambda: {"gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000]} |
|
) |
|
|
|
|
|
batch_size: int = 64 |
|
seq_len: int = 16384 |
|
pad_short: int = 2000 |
|
use_noise_augment: bool = False |
|
use_cache: bool = True |
|
steps_to_start_discriminator: bool = 200000 |
|
|
|
|
|
use_stft_loss: bool = True |
|
use_subband_stft_loss: bool = True |
|
use_mse_gan_loss: bool = True |
|
use_hinge_gan_loss: bool = False |
|
use_feat_match_loss: bool = False |
|
use_l1_spec_loss: bool = False |
|
|
|
subband_stft_loss_params: dict = field( |
|
default_factory=lambda: {"n_ffts": [384, 683, 171], "hop_lengths": [30, 60, 10], "win_lengths": [150, 300, 60]} |
|
) |
|
|
|
|
|
stft_loss_weight: float = 0.5 |
|
subband_stft_loss_weight: float = 0 |
|
mse_G_loss_weight: float = 2.5 |
|
hinge_G_loss_weight: float = 0 |
|
feat_match_loss_weight: float = 108 |
|
l1_spec_loss_weight: float = 0 |
|
|