|
import torch |
|
from torch import nn |
|
|
|
from ..generic.normalization import LayerNorm |
|
|
|
|
|
class DurationPredictor(nn.Module): |
|
"""Glow-TTS duration prediction model. |
|
|
|
:: |
|
|
|
[2 x (conv1d_kxk -> relu -> layer_norm -> dropout)] -> conv1d_1x1 -> durs |
|
|
|
Args: |
|
in_channels (int): Number of channels of the input tensor. |
|
hidden_channels (int): Number of hidden channels of the network. |
|
kernel_size (int): Kernel size for the conv layers. |
|
dropout_p (float): Dropout rate used after each conv layer. |
|
""" |
|
|
|
def __init__(self, in_channels, hidden_channels, kernel_size, dropout_p, cond_channels=None, language_emb_dim=None): |
|
super().__init__() |
|
|
|
|
|
if language_emb_dim: |
|
in_channels += language_emb_dim |
|
|
|
|
|
self.in_channels = in_channels |
|
self.filter_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dropout_p = dropout_p |
|
|
|
self.drop = nn.Dropout(dropout_p) |
|
self.conv_1 = nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2) |
|
self.norm_1 = LayerNorm(hidden_channels) |
|
self.conv_2 = nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2) |
|
self.norm_2 = LayerNorm(hidden_channels) |
|
|
|
self.proj = nn.Conv1d(hidden_channels, 1, 1) |
|
if cond_channels is not None and cond_channels != 0: |
|
self.cond = nn.Conv1d(cond_channels, in_channels, 1) |
|
|
|
if language_emb_dim != 0 and language_emb_dim is not None: |
|
self.cond_lang = nn.Conv1d(language_emb_dim, in_channels, 1) |
|
|
|
def forward(self, x, x_mask, g=None, lang_emb=None): |
|
""" |
|
Shapes: |
|
- x: :math:`[B, C, T]` |
|
- x_mask: :math:`[B, 1, T]` |
|
- g: :math:`[B, C, 1]` |
|
""" |
|
if g is not None: |
|
x = x + self.cond(g) |
|
|
|
if lang_emb is not None: |
|
x = x + self.cond_lang(lang_emb) |
|
|
|
x = self.conv_1(x * x_mask) |
|
x = torch.relu(x) |
|
x = self.norm_1(x) |
|
x = self.drop(x) |
|
x = self.conv_2(x * x_mask) |
|
x = torch.relu(x) |
|
x = self.norm_2(x) |
|
x = self.drop(x) |
|
x = self.proj(x * x_mask) |
|
return x * x_mask |
|
|