|
|
|
"""Extract Mel spectrograms with teacher forcing.""" |
|
|
|
import argparse |
|
import os |
|
|
|
import numpy as np |
|
import torch |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
|
|
from TTS.config import load_config |
|
from TTS.tts.datasets import TTSDataset, load_tts_samples |
|
from TTS.tts.models import setup_model |
|
from TTS.tts.utils.speakers import SpeakerManager |
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer |
|
from TTS.utils.audio import AudioProcessor |
|
from TTS.utils.audio.numpy_transforms import quantize |
|
from TTS.utils.generic_utils import count_parameters |
|
|
|
use_cuda = torch.cuda.is_available() |
|
|
|
|
|
def setup_loader(ap, r, verbose=False): |
|
tokenizer, _ = TTSTokenizer.init_from_config(c) |
|
dataset = TTSDataset( |
|
outputs_per_step=r, |
|
compute_linear_spec=False, |
|
samples=meta_data, |
|
tokenizer=tokenizer, |
|
ap=ap, |
|
batch_group_size=0, |
|
min_text_len=c.min_text_len, |
|
max_text_len=c.max_text_len, |
|
min_audio_len=c.min_audio_len, |
|
max_audio_len=c.max_audio_len, |
|
phoneme_cache_path=c.phoneme_cache_path, |
|
precompute_num_workers=0, |
|
use_noise_augment=False, |
|
verbose=verbose, |
|
speaker_id_mapping=speaker_manager.name_to_id if c.use_speaker_embedding else None, |
|
d_vector_mapping=speaker_manager.embeddings if c.use_d_vector_file else None, |
|
) |
|
|
|
if c.use_phonemes and c.compute_input_seq_cache: |
|
|
|
dataset.compute_input_seq(c.num_loader_workers) |
|
dataset.preprocess_samples() |
|
|
|
loader = DataLoader( |
|
dataset, |
|
batch_size=c.batch_size, |
|
shuffle=False, |
|
collate_fn=dataset.collate_fn, |
|
drop_last=False, |
|
sampler=None, |
|
num_workers=c.num_loader_workers, |
|
pin_memory=False, |
|
) |
|
return loader |
|
|
|
|
|
def set_filename(wav_path, out_path): |
|
wav_file = os.path.basename(wav_path) |
|
file_name = wav_file.split(".")[0] |
|
os.makedirs(os.path.join(out_path, "quant"), exist_ok=True) |
|
os.makedirs(os.path.join(out_path, "mel"), exist_ok=True) |
|
os.makedirs(os.path.join(out_path, "wav_gl"), exist_ok=True) |
|
os.makedirs(os.path.join(out_path, "wav"), exist_ok=True) |
|
wavq_path = os.path.join(out_path, "quant", file_name) |
|
mel_path = os.path.join(out_path, "mel", file_name) |
|
wav_gl_path = os.path.join(out_path, "wav_gl", file_name + ".wav") |
|
wav_path = os.path.join(out_path, "wav", file_name + ".wav") |
|
return file_name, wavq_path, mel_path, wav_gl_path, wav_path |
|
|
|
|
|
def format_data(data): |
|
|
|
text_input = data["token_id"] |
|
text_lengths = data["token_id_lengths"] |
|
mel_input = data["mel"] |
|
mel_lengths = data["mel_lengths"] |
|
item_idx = data["item_idxs"] |
|
d_vectors = data["d_vectors"] |
|
speaker_ids = data["speaker_ids"] |
|
attn_mask = data["attns"] |
|
avg_text_length = torch.mean(text_lengths.float()) |
|
avg_spec_length = torch.mean(mel_lengths.float()) |
|
|
|
|
|
if use_cuda: |
|
text_input = text_input.cuda(non_blocking=True) |
|
text_lengths = text_lengths.cuda(non_blocking=True) |
|
mel_input = mel_input.cuda(non_blocking=True) |
|
mel_lengths = mel_lengths.cuda(non_blocking=True) |
|
if speaker_ids is not None: |
|
speaker_ids = speaker_ids.cuda(non_blocking=True) |
|
if d_vectors is not None: |
|
d_vectors = d_vectors.cuda(non_blocking=True) |
|
if attn_mask is not None: |
|
attn_mask = attn_mask.cuda(non_blocking=True) |
|
return ( |
|
text_input, |
|
text_lengths, |
|
mel_input, |
|
mel_lengths, |
|
speaker_ids, |
|
d_vectors, |
|
avg_text_length, |
|
avg_spec_length, |
|
attn_mask, |
|
item_idx, |
|
) |
|
|
|
|
|
@torch.no_grad() |
|
def inference( |
|
model_name, |
|
model, |
|
ap, |
|
text_input, |
|
text_lengths, |
|
mel_input, |
|
mel_lengths, |
|
speaker_ids=None, |
|
d_vectors=None, |
|
): |
|
if model_name == "glow_tts": |
|
speaker_c = None |
|
if speaker_ids is not None: |
|
speaker_c = speaker_ids |
|
elif d_vectors is not None: |
|
speaker_c = d_vectors |
|
outputs = model.inference_with_MAS( |
|
text_input, |
|
text_lengths, |
|
mel_input, |
|
mel_lengths, |
|
aux_input={"d_vectors": speaker_c, "speaker_ids": speaker_ids}, |
|
) |
|
model_output = outputs["model_outputs"] |
|
model_output = model_output.detach().cpu().numpy() |
|
|
|
elif "tacotron" in model_name: |
|
aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors} |
|
outputs = model(text_input, text_lengths, mel_input, mel_lengths, aux_input) |
|
postnet_outputs = outputs["model_outputs"] |
|
|
|
if model_name == "tacotron": |
|
mel_specs = [] |
|
postnet_outputs = postnet_outputs.data.cpu().numpy() |
|
for b in range(postnet_outputs.shape[0]): |
|
postnet_output = postnet_outputs[b] |
|
mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T)) |
|
model_output = torch.stack(mel_specs).cpu().numpy() |
|
|
|
elif model_name == "tacotron2": |
|
model_output = postnet_outputs.detach().cpu().numpy() |
|
return model_output |
|
|
|
|
|
def extract_spectrograms( |
|
data_loader, model, ap, output_path, quantize_bits=0, save_audio=False, debug=False, metada_name="metada.txt" |
|
): |
|
model.eval() |
|
export_metadata = [] |
|
for _, data in tqdm(enumerate(data_loader), total=len(data_loader)): |
|
|
|
( |
|
text_input, |
|
text_lengths, |
|
mel_input, |
|
mel_lengths, |
|
speaker_ids, |
|
d_vectors, |
|
_, |
|
_, |
|
_, |
|
item_idx, |
|
) = format_data(data) |
|
|
|
model_output = inference( |
|
c.model.lower(), |
|
model, |
|
ap, |
|
text_input, |
|
text_lengths, |
|
mel_input, |
|
mel_lengths, |
|
speaker_ids, |
|
d_vectors, |
|
) |
|
|
|
for idx in range(text_input.shape[0]): |
|
wav_file_path = item_idx[idx] |
|
wav = ap.load_wav(wav_file_path) |
|
_, wavq_path, mel_path, wav_gl_path, wav_path = set_filename(wav_file_path, output_path) |
|
|
|
|
|
if quantize_bits > 0: |
|
wavq = quantize(wav, quantize_bits) |
|
np.save(wavq_path, wavq) |
|
|
|
|
|
mel = model_output[idx] |
|
mel_length = mel_lengths[idx] |
|
mel = mel[:mel_length, :].T |
|
np.save(mel_path, mel) |
|
|
|
export_metadata.append([wav_file_path, mel_path]) |
|
if save_audio: |
|
ap.save_wav(wav, wav_path) |
|
|
|
if debug: |
|
print("Audio for debug saved at:", wav_gl_path) |
|
wav = ap.inv_melspectrogram(mel) |
|
ap.save_wav(wav, wav_gl_path) |
|
|
|
with open(os.path.join(output_path, metada_name), "w", encoding="utf-8") as f: |
|
for data in export_metadata: |
|
f.write(f"{data[0]}|{data[1]+'.npy'}\n") |
|
|
|
|
|
def main(args): |
|
|
|
global meta_data, speaker_manager |
|
|
|
|
|
ap = AudioProcessor(**c.audio) |
|
|
|
|
|
meta_data_train, meta_data_eval = load_tts_samples( |
|
c.datasets, eval_split=args.eval, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size |
|
) |
|
|
|
|
|
meta_data = meta_data_train + meta_data_eval |
|
|
|
|
|
if c.use_speaker_embedding: |
|
speaker_manager = SpeakerManager(data_items=meta_data) |
|
elif c.use_d_vector_file: |
|
speaker_manager = SpeakerManager(d_vectors_file_path=c.d_vector_file) |
|
else: |
|
speaker_manager = None |
|
|
|
|
|
model = setup_model(c) |
|
|
|
|
|
model.load_checkpoint(c, args.checkpoint_path, eval=True) |
|
|
|
if use_cuda: |
|
model.cuda() |
|
|
|
num_params = count_parameters(model) |
|
print("\n > Model has {} parameters".format(num_params), flush=True) |
|
|
|
r = 1 if c.model.lower() == "glow_tts" else model.decoder.r |
|
own_loader = setup_loader(ap, r, verbose=True) |
|
|
|
extract_spectrograms( |
|
own_loader, |
|
model, |
|
ap, |
|
args.output_path, |
|
quantize_bits=args.quantize_bits, |
|
save_audio=args.save_audio, |
|
debug=args.debug, |
|
metada_name="metada.txt", |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--config_path", type=str, help="Path to config file for training.", required=True) |
|
parser.add_argument("--checkpoint_path", type=str, help="Model file to be restored.", required=True) |
|
parser.add_argument("--output_path", type=str, help="Path to save mel specs", required=True) |
|
parser.add_argument("--debug", default=False, action="store_true", help="Save audio files for debug") |
|
parser.add_argument("--save_audio", default=False, action="store_true", help="Save audio files") |
|
parser.add_argument("--quantize_bits", type=int, default=0, help="Save quantized audio files if non-zero") |
|
parser.add_argument("--eval", type=bool, help="compute eval.", default=True) |
|
args = parser.parse_args() |
|
|
|
c = load_config(args.config_path) |
|
c.audio.trim_silence = False |
|
main(args) |
|
|