|
import argparse |
|
import importlib |
|
import os |
|
from argparse import RawTextHelpFormatter |
|
|
|
import numpy as np |
|
import torch |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
|
|
from TTS.config import load_config |
|
from TTS.tts.datasets.TTSDataset import TTSDataset |
|
from TTS.tts.models import setup_model |
|
from TTS.tts.utils.text.characters import make_symbols, phonemes, symbols |
|
from TTS.utils.audio import AudioProcessor |
|
from TTS.utils.io import load_checkpoint |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser( |
|
description="""Extract attention masks from trained Tacotron/Tacotron2 models. |
|
These masks can be used for different purposes including training a TTS model with a Duration Predictor.\n\n""" |
|
"""Each attention mask is written to the same path as the input wav file with ".npy" file extension. |
|
(e.g. path/bla.wav (wav file) --> path/bla.npy (attention mask))\n""" |
|
""" |
|
Example run: |
|
CUDA_VISIBLE_DEVICE="0" python TTS/bin/compute_attention_masks.py |
|
--model_path /data/rw/home/Models/ljspeech-dcattn-December-14-2020_11+10AM-9d0e8c7/checkpoint_200000.pth |
|
--config_path /data/rw/home/Models/ljspeech-dcattn-December-14-2020_11+10AM-9d0e8c7/config.json |
|
--dataset_metafile metadata.csv |
|
--data_path /root/LJSpeech-1.1/ |
|
--batch_size 32 |
|
--dataset ljspeech |
|
--use_cuda True |
|
""", |
|
formatter_class=RawTextHelpFormatter, |
|
) |
|
parser.add_argument("--model_path", type=str, required=True, help="Path to Tacotron/Tacotron2 model file ") |
|
parser.add_argument( |
|
"--config_path", |
|
type=str, |
|
required=True, |
|
help="Path to Tacotron/Tacotron2 config file.", |
|
) |
|
parser.add_argument( |
|
"--dataset", |
|
type=str, |
|
default="", |
|
required=True, |
|
help="Target dataset processor name from TTS.tts.dataset.preprocess.", |
|
) |
|
|
|
parser.add_argument( |
|
"--dataset_metafile", |
|
type=str, |
|
default="", |
|
required=True, |
|
help="Dataset metafile inclusing file paths with transcripts.", |
|
) |
|
parser.add_argument("--data_path", type=str, default="", help="Defines the data path. It overwrites config.json.") |
|
parser.add_argument("--use_cuda", type=bool, default=False, help="enable/disable cuda.") |
|
|
|
parser.add_argument( |
|
"--batch_size", default=16, type=int, help="Batch size for the model. Use batch_size=1 if you have no CUDA." |
|
) |
|
args = parser.parse_args() |
|
|
|
C = load_config(args.config_path) |
|
ap = AudioProcessor(**C.audio) |
|
|
|
|
|
if "characters" in C.keys(): |
|
symbols, phonemes = make_symbols(**C.characters) |
|
|
|
|
|
num_chars = len(phonemes) if C.use_phonemes else len(symbols) |
|
|
|
model = setup_model(C) |
|
model, _ = load_checkpoint(model, args.model_path, args.use_cuda, True) |
|
|
|
|
|
preprocessor = importlib.import_module("TTS.tts.datasets.formatters") |
|
preprocessor = getattr(preprocessor, args.dataset) |
|
meta_data = preprocessor(args.data_path, args.dataset_metafile) |
|
dataset = TTSDataset( |
|
model.decoder.r, |
|
C.text_cleaner, |
|
compute_linear_spec=False, |
|
ap=ap, |
|
meta_data=meta_data, |
|
characters=C.characters if "characters" in C.keys() else None, |
|
add_blank=C["add_blank"] if "add_blank" in C.keys() else False, |
|
use_phonemes=C.use_phonemes, |
|
phoneme_cache_path=C.phoneme_cache_path, |
|
phoneme_language=C.phoneme_language, |
|
enable_eos_bos=C.enable_eos_bos_chars, |
|
) |
|
|
|
dataset.sort_and_filter_items(C.get("sort_by_audio_len", default=False)) |
|
loader = DataLoader( |
|
dataset, |
|
batch_size=args.batch_size, |
|
num_workers=4, |
|
collate_fn=dataset.collate_fn, |
|
shuffle=False, |
|
drop_last=False, |
|
) |
|
|
|
|
|
file_paths = [] |
|
with torch.no_grad(): |
|
for data in tqdm(loader): |
|
|
|
text_input = data[0] |
|
text_lengths = data[1] |
|
linear_input = data[3] |
|
mel_input = data[4] |
|
mel_lengths = data[5] |
|
stop_targets = data[6] |
|
item_idxs = data[7] |
|
|
|
|
|
if args.use_cuda: |
|
text_input = text_input.cuda() |
|
text_lengths = text_lengths.cuda() |
|
mel_input = mel_input.cuda() |
|
mel_lengths = mel_lengths.cuda() |
|
|
|
model_outputs = model.forward(text_input, text_lengths, mel_input) |
|
|
|
alignments = model_outputs["alignments"].detach() |
|
for idx, alignment in enumerate(alignments): |
|
item_idx = item_idxs[idx] |
|
|
|
alignment = ( |
|
torch.nn.functional.interpolate( |
|
alignment.transpose(0, 1).unsqueeze(0), |
|
size=None, |
|
scale_factor=model.decoder.r, |
|
mode="nearest", |
|
align_corners=None, |
|
recompute_scale_factor=None, |
|
) |
|
.squeeze(0) |
|
.transpose(0, 1) |
|
) |
|
|
|
alignment = alignment[: mel_lengths[idx], : text_lengths[idx]].cpu().numpy() |
|
|
|
wav_file_name = os.path.basename(item_idx) |
|
align_file_name = os.path.splitext(wav_file_name)[0] + "_attn.npy" |
|
file_path = item_idx.replace(wav_file_name, align_file_name) |
|
|
|
wav_file_abs_path = os.path.abspath(item_idx) |
|
file_abs_path = os.path.abspath(file_path) |
|
file_paths.append([wav_file_abs_path, file_abs_path]) |
|
np.save(file_path, alignment) |
|
|
|
|
|
metafile = os.path.join(args.data_path, "metadata_attn_mask.txt") |
|
|
|
with open(metafile, "w", encoding="utf-8") as f: |
|
for p in file_paths: |
|
f.write(f"{p[0]}|{p[1]}\n") |
|
print(f" >> Metafile created: {metafile}") |
|
|