|
import sys |
|
import time |
|
from dataclasses import dataclass, field |
|
from typing import Dict, List, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from coqpit import Coqpit |
|
from torch import nn |
|
from torch.utils.data import DataLoader |
|
from torch.utils.data.distributed import DistributedSampler |
|
|
|
from TTS.tts.utils.visual import plot_spectrogram |
|
from TTS.utils.audio import AudioProcessor |
|
from TTS.utils.audio.numpy_transforms import mulaw_decode |
|
from TTS.utils.io import load_fsspec |
|
from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset |
|
from TTS.vocoder.layers.losses import WaveRNNLoss |
|
from TTS.vocoder.models.base_vocoder import BaseVocoder |
|
from TTS.vocoder.utils.distribution import sample_from_discretized_mix_logistic, sample_from_gaussian |
|
|
|
|
|
def stream(string, variables): |
|
sys.stdout.write(f"\r{string}" % variables) |
|
|
|
|
|
|
|
|
|
class ResBlock(nn.Module): |
|
def __init__(self, dims): |
|
super().__init__() |
|
self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) |
|
self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) |
|
self.batch_norm1 = nn.BatchNorm1d(dims) |
|
self.batch_norm2 = nn.BatchNorm1d(dims) |
|
|
|
def forward(self, x): |
|
residual = x |
|
x = self.conv1(x) |
|
x = self.batch_norm1(x) |
|
x = F.relu(x) |
|
x = self.conv2(x) |
|
x = self.batch_norm2(x) |
|
return x + residual |
|
|
|
|
|
class MelResNet(nn.Module): |
|
def __init__(self, num_res_blocks, in_dims, compute_dims, res_out_dims, pad): |
|
super().__init__() |
|
k_size = pad * 2 + 1 |
|
self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False) |
|
self.batch_norm = nn.BatchNorm1d(compute_dims) |
|
self.layers = nn.ModuleList() |
|
for _ in range(num_res_blocks): |
|
self.layers.append(ResBlock(compute_dims)) |
|
self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1) |
|
|
|
def forward(self, x): |
|
x = self.conv_in(x) |
|
x = self.batch_norm(x) |
|
x = F.relu(x) |
|
for f in self.layers: |
|
x = f(x) |
|
x = self.conv_out(x) |
|
return x |
|
|
|
|
|
class Stretch2d(nn.Module): |
|
def __init__(self, x_scale, y_scale): |
|
super().__init__() |
|
self.x_scale = x_scale |
|
self.y_scale = y_scale |
|
|
|
def forward(self, x): |
|
b, c, h, w = x.size() |
|
x = x.unsqueeze(-1).unsqueeze(3) |
|
x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale) |
|
return x.view(b, c, h * self.y_scale, w * self.x_scale) |
|
|
|
|
|
class UpsampleNetwork(nn.Module): |
|
def __init__( |
|
self, |
|
feat_dims, |
|
upsample_scales, |
|
compute_dims, |
|
num_res_blocks, |
|
res_out_dims, |
|
pad, |
|
use_aux_net, |
|
): |
|
super().__init__() |
|
self.total_scale = np.cumproduct(upsample_scales)[-1] |
|
self.indent = pad * self.total_scale |
|
self.use_aux_net = use_aux_net |
|
if use_aux_net: |
|
self.resnet = MelResNet(num_res_blocks, feat_dims, compute_dims, res_out_dims, pad) |
|
self.resnet_stretch = Stretch2d(self.total_scale, 1) |
|
self.up_layers = nn.ModuleList() |
|
for scale in upsample_scales: |
|
k_size = (1, scale * 2 + 1) |
|
padding = (0, scale) |
|
stretch = Stretch2d(scale, 1) |
|
conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False) |
|
conv.weight.data.fill_(1.0 / k_size[1]) |
|
self.up_layers.append(stretch) |
|
self.up_layers.append(conv) |
|
|
|
def forward(self, m): |
|
if self.use_aux_net: |
|
aux = self.resnet(m).unsqueeze(1) |
|
aux = self.resnet_stretch(aux) |
|
aux = aux.squeeze(1) |
|
aux = aux.transpose(1, 2) |
|
else: |
|
aux = None |
|
m = m.unsqueeze(1) |
|
for f in self.up_layers: |
|
m = f(m) |
|
m = m.squeeze(1)[:, :, self.indent : -self.indent] |
|
return m.transpose(1, 2), aux |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, scale, pad, num_res_blocks, feat_dims, compute_dims, res_out_dims, use_aux_net): |
|
super().__init__() |
|
self.scale = scale |
|
self.pad = pad |
|
self.indent = pad * scale |
|
self.use_aux_net = use_aux_net |
|
self.resnet = MelResNet(num_res_blocks, feat_dims, compute_dims, res_out_dims, pad) |
|
|
|
def forward(self, m): |
|
if self.use_aux_net: |
|
aux = self.resnet(m) |
|
aux = torch.nn.functional.interpolate(aux, scale_factor=self.scale, mode="linear", align_corners=True) |
|
aux = aux.transpose(1, 2) |
|
else: |
|
aux = None |
|
m = torch.nn.functional.interpolate(m, scale_factor=self.scale, mode="linear", align_corners=True) |
|
m = m[:, :, self.indent : -self.indent] |
|
m = m * 0.045 |
|
|
|
return m.transpose(1, 2), aux |
|
|
|
|
|
@dataclass |
|
class WavernnArgs(Coqpit): |
|
"""🐸 WaveRNN model arguments. |
|
|
|
rnn_dims (int): |
|
Number of hidden channels in RNN layers. Defaults to 512. |
|
fc_dims (int): |
|
Number of hidden channels in fully-conntected layers. Defaults to 512. |
|
compute_dims (int): |
|
Number of hidden channels in the feature ResNet. Defaults to 128. |
|
res_out_dim (int): |
|
Number of hidden channels in the feature ResNet output. Defaults to 128. |
|
num_res_blocks (int): |
|
Number of residual blocks in the ResNet. Defaults to 10. |
|
use_aux_net (bool): |
|
enable/disable the feature ResNet. Defaults to True. |
|
use_upsample_net (bool): |
|
enable/ disable the upsampling networl. If False, basic upsampling is used. Defaults to True. |
|
upsample_factors (list): |
|
Upsampling factors. The multiply of the values must match the `hop_length`. Defaults to ```[4, 8, 8]```. |
|
mode (str): |
|
Output mode of the WaveRNN vocoder. `mold` for Mixture of Logistic Distribution, `gauss` for a single |
|
Gaussian Distribution and `bits` for quantized bits as the model's output. |
|
mulaw (bool): |
|
enable / disable the use of Mulaw quantization for training. Only applicable if `mode == 'bits'`. Defaults |
|
to `True`. |
|
pad (int): |
|
Padding applied to the input feature frames against the convolution layers of the feature network. |
|
Defaults to 2. |
|
""" |
|
|
|
rnn_dims: int = 512 |
|
fc_dims: int = 512 |
|
compute_dims: int = 128 |
|
res_out_dims: int = 128 |
|
num_res_blocks: int = 10 |
|
use_aux_net: bool = True |
|
use_upsample_net: bool = True |
|
upsample_factors: List[int] = field(default_factory=lambda: [4, 8, 8]) |
|
mode: str = "mold" |
|
mulaw: bool = True |
|
pad: int = 2 |
|
feat_dims: int = 80 |
|
|
|
|
|
class Wavernn(BaseVocoder): |
|
def __init__(self, config: Coqpit): |
|
"""🐸 WaveRNN model. |
|
Original paper - https://arxiv.org/abs/1802.08435 |
|
Official implementation - https://github.com/fatchord/WaveRNN |
|
|
|
Args: |
|
config (Coqpit): [description] |
|
|
|
Raises: |
|
RuntimeError: [description] |
|
|
|
Examples: |
|
>>> from TTS.vocoder.configs import WavernnConfig |
|
>>> config = WavernnConfig() |
|
>>> model = Wavernn(config) |
|
|
|
Paper Abstract: |
|
Sequential models achieve state-of-the-art results in audio, visual and textual domains with respect to |
|
both estimating the data distribution and generating high-quality samples. Efficient sampling for this |
|
class of models has however remained an elusive problem. With a focus on text-to-speech synthesis, we |
|
describe a set of general techniques for reducing sampling time while maintaining high output quality. |
|
We first describe a single-layer recurrent neural network, the WaveRNN, with a dual softmax layer that |
|
matches the quality of the state-of-the-art WaveNet model. The compact form of the network makes it |
|
possible to generate 24kHz 16-bit audio 4x faster than real time on a GPU. Second, we apply a weight |
|
pruning technique to reduce the number of weights in the WaveRNN. We find that, for a constant number of |
|
parameters, large sparse networks perform better than small dense networks and this relationship holds for |
|
sparsity levels beyond 96%. The small number of weights in a Sparse WaveRNN makes it possible to sample |
|
high-fidelity audio on a mobile CPU in real time. Finally, we propose a new generation scheme based on |
|
subscaling that folds a long sequence into a batch of shorter sequences and allows one to generate multiple |
|
samples at once. The Subscale WaveRNN produces 16 samples per step without loss of quality and offers an |
|
orthogonal method for increasing sampling efficiency. |
|
""" |
|
super().__init__(config) |
|
|
|
if isinstance(self.args.mode, int): |
|
self.n_classes = 2**self.args.mode |
|
elif self.args.mode == "mold": |
|
self.n_classes = 3 * 10 |
|
elif self.args.mode == "gauss": |
|
self.n_classes = 2 |
|
else: |
|
raise RuntimeError("Unknown model mode value - ", self.args.mode) |
|
|
|
self.ap = AudioProcessor(**config.audio.to_dict()) |
|
self.aux_dims = self.args.res_out_dims // 4 |
|
|
|
if self.args.use_upsample_net: |
|
assert ( |
|
np.cumproduct(self.args.upsample_factors)[-1] == config.audio.hop_length |
|
), " [!] upsample scales needs to be equal to hop_length" |
|
self.upsample = UpsampleNetwork( |
|
self.args.feat_dims, |
|
self.args.upsample_factors, |
|
self.args.compute_dims, |
|
self.args.num_res_blocks, |
|
self.args.res_out_dims, |
|
self.args.pad, |
|
self.args.use_aux_net, |
|
) |
|
else: |
|
self.upsample = Upsample( |
|
config.audio.hop_length, |
|
self.args.pad, |
|
self.args.num_res_blocks, |
|
self.args.feat_dims, |
|
self.args.compute_dims, |
|
self.args.res_out_dims, |
|
self.args.use_aux_net, |
|
) |
|
if self.args.use_aux_net: |
|
self.I = nn.Linear(self.args.feat_dims + self.aux_dims + 1, self.args.rnn_dims) |
|
self.rnn1 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True) |
|
self.rnn2 = nn.GRU(self.args.rnn_dims + self.aux_dims, self.args.rnn_dims, batch_first=True) |
|
self.fc1 = nn.Linear(self.args.rnn_dims + self.aux_dims, self.args.fc_dims) |
|
self.fc2 = nn.Linear(self.args.fc_dims + self.aux_dims, self.args.fc_dims) |
|
self.fc3 = nn.Linear(self.args.fc_dims, self.n_classes) |
|
else: |
|
self.I = nn.Linear(self.args.feat_dims + 1, self.args.rnn_dims) |
|
self.rnn1 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True) |
|
self.rnn2 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True) |
|
self.fc1 = nn.Linear(self.args.rnn_dims, self.args.fc_dims) |
|
self.fc2 = nn.Linear(self.args.fc_dims, self.args.fc_dims) |
|
self.fc3 = nn.Linear(self.args.fc_dims, self.n_classes) |
|
|
|
def forward(self, x, mels): |
|
bsize = x.size(0) |
|
h1 = torch.zeros(1, bsize, self.args.rnn_dims).to(x.device) |
|
h2 = torch.zeros(1, bsize, self.args.rnn_dims).to(x.device) |
|
mels, aux = self.upsample(mels) |
|
|
|
if self.args.use_aux_net: |
|
aux_idx = [self.aux_dims * i for i in range(5)] |
|
a1 = aux[:, :, aux_idx[0] : aux_idx[1]] |
|
a2 = aux[:, :, aux_idx[1] : aux_idx[2]] |
|
a3 = aux[:, :, aux_idx[2] : aux_idx[3]] |
|
a4 = aux[:, :, aux_idx[3] : aux_idx[4]] |
|
|
|
x = ( |
|
torch.cat([x.unsqueeze(-1), mels, a1], dim=2) |
|
if self.args.use_aux_net |
|
else torch.cat([x.unsqueeze(-1), mels], dim=2) |
|
) |
|
x = self.I(x) |
|
res = x |
|
self.rnn1.flatten_parameters() |
|
x, _ = self.rnn1(x, h1) |
|
|
|
x = x + res |
|
res = x |
|
x = torch.cat([x, a2], dim=2) if self.args.use_aux_net else x |
|
self.rnn2.flatten_parameters() |
|
x, _ = self.rnn2(x, h2) |
|
|
|
x = x + res |
|
x = torch.cat([x, a3], dim=2) if self.args.use_aux_net else x |
|
x = F.relu(self.fc1(x)) |
|
|
|
x = torch.cat([x, a4], dim=2) if self.args.use_aux_net else x |
|
x = F.relu(self.fc2(x)) |
|
return self.fc3(x) |
|
|
|
def inference(self, mels, batched=None, target=None, overlap=None): |
|
self.eval() |
|
output = [] |
|
start = time.time() |
|
rnn1 = self.get_gru_cell(self.rnn1) |
|
rnn2 = self.get_gru_cell(self.rnn2) |
|
|
|
with torch.no_grad(): |
|
if isinstance(mels, np.ndarray): |
|
mels = torch.FloatTensor(mels).to(str(next(self.parameters()).device)) |
|
|
|
if mels.ndim == 2: |
|
mels = mels.unsqueeze(0) |
|
wave_len = (mels.size(-1) - 1) * self.config.audio.hop_length |
|
|
|
mels = self.pad_tensor(mels.transpose(1, 2), pad=self.args.pad, side="both") |
|
mels, aux = self.upsample(mels.transpose(1, 2)) |
|
|
|
if batched: |
|
mels = self.fold_with_overlap(mels, target, overlap) |
|
if aux is not None: |
|
aux = self.fold_with_overlap(aux, target, overlap) |
|
|
|
b_size, seq_len, _ = mels.size() |
|
|
|
h1 = torch.zeros(b_size, self.args.rnn_dims).type_as(mels) |
|
h2 = torch.zeros(b_size, self.args.rnn_dims).type_as(mels) |
|
x = torch.zeros(b_size, 1).type_as(mels) |
|
|
|
if self.args.use_aux_net: |
|
d = self.aux_dims |
|
aux_split = [aux[:, :, d * i : d * (i + 1)] for i in range(4)] |
|
|
|
for i in range(seq_len): |
|
m_t = mels[:, i, :] |
|
|
|
if self.args.use_aux_net: |
|
a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split) |
|
|
|
x = torch.cat([x, m_t, a1_t], dim=1) if self.args.use_aux_net else torch.cat([x, m_t], dim=1) |
|
x = self.I(x) |
|
h1 = rnn1(x, h1) |
|
|
|
x = x + h1 |
|
inp = torch.cat([x, a2_t], dim=1) if self.args.use_aux_net else x |
|
h2 = rnn2(inp, h2) |
|
|
|
x = x + h2 |
|
x = torch.cat([x, a3_t], dim=1) if self.args.use_aux_net else x |
|
x = F.relu(self.fc1(x)) |
|
|
|
x = torch.cat([x, a4_t], dim=1) if self.args.use_aux_net else x |
|
x = F.relu(self.fc2(x)) |
|
|
|
logits = self.fc3(x) |
|
|
|
if self.args.mode == "mold": |
|
sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2)) |
|
output.append(sample.view(-1)) |
|
x = sample.transpose(0, 1).type_as(mels) |
|
elif self.args.mode == "gauss": |
|
sample = sample_from_gaussian(logits.unsqueeze(0).transpose(1, 2)) |
|
output.append(sample.view(-1)) |
|
x = sample.transpose(0, 1).type_as(mels) |
|
elif isinstance(self.args.mode, int): |
|
posterior = F.softmax(logits, dim=1) |
|
distrib = torch.distributions.Categorical(posterior) |
|
|
|
sample = 2 * distrib.sample().float() / (self.n_classes - 1.0) - 1.0 |
|
output.append(sample) |
|
x = sample.unsqueeze(-1) |
|
else: |
|
raise RuntimeError("Unknown model mode value - ", self.args.mode) |
|
|
|
if i % 100 == 0: |
|
self.gen_display(i, seq_len, b_size, start) |
|
|
|
output = torch.stack(output).transpose(0, 1) |
|
output = output.cpu() |
|
if batched: |
|
output = output.numpy() |
|
output = output.astype(np.float64) |
|
|
|
output = self.xfade_and_unfold(output, target, overlap) |
|
else: |
|
output = output[0] |
|
|
|
if self.args.mulaw and isinstance(self.args.mode, int): |
|
output = mulaw_decode(wav=output, mulaw_qc=self.args.mode) |
|
|
|
|
|
fade_out = np.linspace(1, 0, 20 * self.config.audio.hop_length) |
|
output = output[:wave_len] |
|
|
|
if wave_len > len(fade_out): |
|
output[-20 * self.config.audio.hop_length :] *= fade_out |
|
|
|
self.train() |
|
return output |
|
|
|
def gen_display(self, i, seq_len, b_size, start): |
|
gen_rate = (i + 1) / (time.time() - start) * b_size / 1000 |
|
realtime_ratio = gen_rate * 1000 / self.config.audio.sample_rate |
|
stream( |
|
"%i/%i -- batch_size: %i -- gen_rate: %.1f kHz -- x_realtime: %.1f ", |
|
(i * b_size, seq_len * b_size, b_size, gen_rate, realtime_ratio), |
|
) |
|
|
|
def fold_with_overlap(self, x, target, overlap): |
|
"""Fold the tensor with overlap for quick batched inference. |
|
Overlap will be used for crossfading in xfade_and_unfold() |
|
Args: |
|
x (tensor) : Upsampled conditioning features. |
|
shape=(1, timesteps, features) |
|
target (int) : Target timesteps for each index of batch |
|
overlap (int) : Timesteps for both xfade and rnn warmup |
|
Return: |
|
(tensor) : shape=(num_folds, target + 2 * overlap, features) |
|
Details: |
|
x = [[h1, h2, ... hn]] |
|
Where each h is a vector of conditioning features |
|
Eg: target=2, overlap=1 with x.size(1)=10 |
|
folded = [[h1, h2, h3, h4], |
|
[h4, h5, h6, h7], |
|
[h7, h8, h9, h10]] |
|
""" |
|
|
|
_, total_len, features = x.size() |
|
|
|
|
|
num_folds = (total_len - overlap) // (target + overlap) |
|
extended_len = num_folds * (overlap + target) + overlap |
|
remaining = total_len - extended_len |
|
|
|
|
|
if remaining != 0: |
|
num_folds += 1 |
|
padding = target + 2 * overlap - remaining |
|
x = self.pad_tensor(x, padding, side="after") |
|
|
|
folded = torch.zeros(num_folds, target + 2 * overlap, features).to(x.device) |
|
|
|
|
|
for i in range(num_folds): |
|
start = i * (target + overlap) |
|
end = start + target + 2 * overlap |
|
folded[i] = x[:, start:end, :] |
|
|
|
return folded |
|
|
|
@staticmethod |
|
def get_gru_cell(gru): |
|
gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size) |
|
gru_cell.weight_hh.data = gru.weight_hh_l0.data |
|
gru_cell.weight_ih.data = gru.weight_ih_l0.data |
|
gru_cell.bias_hh.data = gru.bias_hh_l0.data |
|
gru_cell.bias_ih.data = gru.bias_ih_l0.data |
|
return gru_cell |
|
|
|
@staticmethod |
|
def pad_tensor(x, pad, side="both"): |
|
|
|
|
|
b, t, c = x.size() |
|
total = t + 2 * pad if side == "both" else t + pad |
|
padded = torch.zeros(b, total, c).to(x.device) |
|
if side in ("before", "both"): |
|
padded[:, pad : pad + t, :] = x |
|
elif side == "after": |
|
padded[:, :t, :] = x |
|
return padded |
|
|
|
@staticmethod |
|
def xfade_and_unfold(y, target, overlap): |
|
"""Applies a crossfade and unfolds into a 1d array. |
|
Args: |
|
y (ndarry) : Batched sequences of audio samples |
|
shape=(num_folds, target + 2 * overlap) |
|
dtype=np.float64 |
|
overlap (int) : Timesteps for both xfade and rnn warmup |
|
Return: |
|
(ndarry) : audio samples in a 1d array |
|
shape=(total_len) |
|
dtype=np.float64 |
|
Details: |
|
y = [[seq1], |
|
[seq2], |
|
[seq3]] |
|
Apply a gain envelope at both ends of the sequences |
|
y = [[seq1_in, seq1_target, seq1_out], |
|
[seq2_in, seq2_target, seq2_out], |
|
[seq3_in, seq3_target, seq3_out]] |
|
Stagger and add up the groups of samples: |
|
[seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...] |
|
""" |
|
|
|
num_folds, length = y.shape |
|
target = length - 2 * overlap |
|
total_len = num_folds * (target + overlap) + overlap |
|
|
|
|
|
silence_len = overlap // 2 |
|
fade_len = overlap - silence_len |
|
silence = np.zeros((silence_len), dtype=np.float64) |
|
|
|
|
|
t = np.linspace(-1, 1, fade_len, dtype=np.float64) |
|
fade_in = np.sqrt(0.5 * (1 + t)) |
|
fade_out = np.sqrt(0.5 * (1 - t)) |
|
|
|
|
|
fade_in = np.concatenate([silence, fade_in]) |
|
fade_out = np.concatenate([fade_out, silence]) |
|
|
|
|
|
y[:, :overlap] *= fade_in |
|
y[:, -overlap:] *= fade_out |
|
|
|
unfolded = np.zeros((total_len), dtype=np.float64) |
|
|
|
|
|
for i in range(num_folds): |
|
start = i * (target + overlap) |
|
end = start + target + 2 * overlap |
|
unfolded[start:end] += y[i] |
|
|
|
return unfolded |
|
|
|
def load_checkpoint( |
|
self, config, checkpoint_path, eval=False, cache=False |
|
): |
|
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) |
|
self.load_state_dict(state["model"]) |
|
if eval: |
|
self.eval() |
|
assert not self.training |
|
|
|
def train_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]: |
|
mels = batch["input"] |
|
waveform = batch["waveform"] |
|
waveform_coarse = batch["waveform_coarse"] |
|
|
|
y_hat = self.forward(waveform, mels) |
|
if isinstance(self.args.mode, int): |
|
y_hat = y_hat.transpose(1, 2).unsqueeze(-1) |
|
else: |
|
waveform_coarse = waveform_coarse.float() |
|
waveform_coarse = waveform_coarse.unsqueeze(-1) |
|
|
|
loss_dict = criterion(y_hat, waveform_coarse) |
|
return {"model_output": y_hat}, loss_dict |
|
|
|
def eval_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]: |
|
return self.train_step(batch, criterion) |
|
|
|
@torch.no_grad() |
|
def test( |
|
self, assets: Dict, test_loader: "DataLoader", output: Dict |
|
) -> Tuple[Dict, Dict]: |
|
ap = self.ap |
|
figures = {} |
|
audios = {} |
|
samples = test_loader.dataset.load_test_samples(1) |
|
for idx, sample in enumerate(samples): |
|
x = torch.FloatTensor(sample[0]) |
|
x = x.to(next(self.parameters()).device) |
|
y_hat = self.inference(x, self.config.batched, self.config.target_samples, self.config.overlap_samples) |
|
x_hat = ap.melspectrogram(y_hat) |
|
figures.update( |
|
{ |
|
f"test_{idx}/ground_truth": plot_spectrogram(x.T), |
|
f"test_{idx}/prediction": plot_spectrogram(x_hat.T), |
|
} |
|
) |
|
audios.update({f"test_{idx}/audio": y_hat}) |
|
|
|
return figures, audios |
|
|
|
def test_log( |
|
self, outputs: Dict, logger: "Logger", assets: Dict, steps: int |
|
) -> Tuple[Dict, np.ndarray]: |
|
figures, audios = outputs |
|
logger.eval_figures(steps, figures) |
|
logger.eval_audios(steps, audios, self.ap.sample_rate) |
|
|
|
@staticmethod |
|
def format_batch(batch: Dict) -> Dict: |
|
waveform = batch[0] |
|
mels = batch[1] |
|
waveform_coarse = batch[2] |
|
return {"input": mels, "waveform": waveform, "waveform_coarse": waveform_coarse} |
|
|
|
def get_data_loader( |
|
self, |
|
config: Coqpit, |
|
assets: Dict, |
|
is_eval: True, |
|
samples: List, |
|
verbose: bool, |
|
num_gpus: int, |
|
): |
|
ap = self.ap |
|
dataset = WaveRNNDataset( |
|
ap=ap, |
|
items=samples, |
|
seq_len=config.seq_len, |
|
hop_len=ap.hop_length, |
|
pad=config.model_args.pad, |
|
mode=config.model_args.mode, |
|
mulaw=config.model_args.mulaw, |
|
is_training=not is_eval, |
|
verbose=verbose, |
|
) |
|
sampler = DistributedSampler(dataset, shuffle=True) if num_gpus > 1 else None |
|
loader = DataLoader( |
|
dataset, |
|
batch_size=1 if is_eval else config.batch_size, |
|
shuffle=num_gpus == 0, |
|
collate_fn=dataset.collate, |
|
sampler=sampler, |
|
num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, |
|
pin_memory=True, |
|
) |
|
return loader |
|
|
|
def get_criterion(self): |
|
|
|
return WaveRNNLoss(self.args.mode) |
|
|
|
@staticmethod |
|
def init_from_config(config: "WavernnConfig"): |
|
return Wavernn(config) |
|
|