|
import torch |
|
|
|
from TTS.vocoder.layers.pqmf import PQMF |
|
from TTS.vocoder.models.melgan_generator import MelganGenerator |
|
|
|
|
|
class MultibandMelganGenerator(MelganGenerator): |
|
def __init__( |
|
self, |
|
in_channels=80, |
|
out_channels=4, |
|
proj_kernel=7, |
|
base_channels=384, |
|
upsample_factors=(2, 8, 2, 2), |
|
res_kernel=3, |
|
num_res_blocks=3, |
|
): |
|
super().__init__( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
proj_kernel=proj_kernel, |
|
base_channels=base_channels, |
|
upsample_factors=upsample_factors, |
|
res_kernel=res_kernel, |
|
num_res_blocks=num_res_blocks, |
|
) |
|
self.pqmf_layer = PQMF(N=4, taps=62, cutoff=0.15, beta=9.0) |
|
|
|
def pqmf_analysis(self, x): |
|
return self.pqmf_layer.analysis(x) |
|
|
|
def pqmf_synthesis(self, x): |
|
return self.pqmf_layer.synthesis(x) |
|
|
|
@torch.no_grad() |
|
def inference(self, cond_features): |
|
cond_features = cond_features.to(self.layers[1].weight.device) |
|
cond_features = torch.nn.functional.pad( |
|
cond_features, (self.inference_padding, self.inference_padding), "replicate" |
|
) |
|
return self.pqmf_synthesis(self.layers(cond_features)) |
|
|