|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from vocoder.distribution import sample_from_discretized_mix_logistic |
|
from vocoder.display import * |
|
from vocoder.audio import * |
|
|
|
|
|
class ResBlock(nn.Module): |
|
def __init__(self, dims): |
|
super().__init__() |
|
self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) |
|
self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) |
|
self.batch_norm1 = nn.BatchNorm1d(dims) |
|
self.batch_norm2 = nn.BatchNorm1d(dims) |
|
|
|
def forward(self, x): |
|
residual = x |
|
x = self.conv1(x) |
|
x = self.batch_norm1(x) |
|
x = F.relu(x) |
|
x = self.conv2(x) |
|
x = self.batch_norm2(x) |
|
return x + residual |
|
|
|
|
|
class MelResNet(nn.Module): |
|
def __init__(self, res_blocks, in_dims, compute_dims, res_out_dims, pad): |
|
super().__init__() |
|
k_size = pad * 2 + 1 |
|
self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False) |
|
self.batch_norm = nn.BatchNorm1d(compute_dims) |
|
self.layers = nn.ModuleList() |
|
for i in range(res_blocks): |
|
self.layers.append(ResBlock(compute_dims)) |
|
self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1) |
|
|
|
def forward(self, x): |
|
x = self.conv_in(x) |
|
x = self.batch_norm(x) |
|
x = F.relu(x) |
|
for f in self.layers: x = f(x) |
|
x = self.conv_out(x) |
|
return x |
|
|
|
|
|
class Stretch2d(nn.Module): |
|
def __init__(self, x_scale, y_scale): |
|
super().__init__() |
|
self.x_scale = x_scale |
|
self.y_scale = y_scale |
|
|
|
def forward(self, x): |
|
b, c, h, w = x.size() |
|
x = x.unsqueeze(-1).unsqueeze(3) |
|
x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale) |
|
return x.view(b, c, h * self.y_scale, w * self.x_scale) |
|
|
|
|
|
class UpsampleNetwork(nn.Module): |
|
def __init__(self, feat_dims, upsample_scales, compute_dims, |
|
res_blocks, res_out_dims, pad): |
|
super().__init__() |
|
total_scale = np.cumproduct(upsample_scales)[-1] |
|
self.indent = pad * total_scale |
|
self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims, pad) |
|
self.resnet_stretch = Stretch2d(total_scale, 1) |
|
self.up_layers = nn.ModuleList() |
|
for scale in upsample_scales: |
|
k_size = (1, scale * 2 + 1) |
|
padding = (0, scale) |
|
stretch = Stretch2d(scale, 1) |
|
conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False) |
|
conv.weight.data.fill_(1. / k_size[1]) |
|
self.up_layers.append(stretch) |
|
self.up_layers.append(conv) |
|
|
|
def forward(self, m): |
|
aux = self.resnet(m).unsqueeze(1) |
|
aux = self.resnet_stretch(aux) |
|
aux = aux.squeeze(1) |
|
m = m.unsqueeze(1) |
|
for f in self.up_layers: m = f(m) |
|
m = m.squeeze(1)[:, :, self.indent:-self.indent] |
|
return m.transpose(1, 2), aux.transpose(1, 2) |
|
|
|
|
|
class WaveRNN(nn.Module): |
|
def __init__(self, rnn_dims, fc_dims, bits, pad, upsample_factors, |
|
feat_dims, compute_dims, res_out_dims, res_blocks, |
|
hop_length, sample_rate, mode='RAW'): |
|
super().__init__() |
|
self.mode = mode |
|
self.pad = pad |
|
if self.mode == 'RAW' : |
|
self.n_classes = 2 ** bits |
|
elif self.mode == 'MOL' : |
|
self.n_classes = 30 |
|
else : |
|
RuntimeError("Unknown model mode value - ", self.mode) |
|
|
|
self.rnn_dims = rnn_dims |
|
self.aux_dims = res_out_dims // 4 |
|
self.hop_length = hop_length |
|
self.sample_rate = sample_rate |
|
|
|
self.upsample = UpsampleNetwork(feat_dims, upsample_factors, compute_dims, res_blocks, res_out_dims, pad) |
|
self.I = nn.Linear(feat_dims + self.aux_dims + 1, rnn_dims) |
|
self.rnn1 = nn.GRU(rnn_dims, rnn_dims, batch_first=True) |
|
self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims, batch_first=True) |
|
self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims) |
|
self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims) |
|
self.fc3 = nn.Linear(fc_dims, self.n_classes) |
|
|
|
self.step = nn.Parameter(torch.zeros(1).long(), requires_grad=False) |
|
self.num_params() |
|
|
|
def forward(self, x, mels): |
|
self.step += 1 |
|
bsize = x.size(0) |
|
if torch.cuda.is_available(): |
|
h1 = torch.zeros(1, bsize, self.rnn_dims).cuda() |
|
h2 = torch.zeros(1, bsize, self.rnn_dims).cuda() |
|
else: |
|
h1 = torch.zeros(1, bsize, self.rnn_dims).cpu() |
|
h2 = torch.zeros(1, bsize, self.rnn_dims).cpu() |
|
mels, aux = self.upsample(mels) |
|
|
|
aux_idx = [self.aux_dims * i for i in range(5)] |
|
a1 = aux[:, :, aux_idx[0]:aux_idx[1]] |
|
a2 = aux[:, :, aux_idx[1]:aux_idx[2]] |
|
a3 = aux[:, :, aux_idx[2]:aux_idx[3]] |
|
a4 = aux[:, :, aux_idx[3]:aux_idx[4]] |
|
|
|
x = torch.cat([x.unsqueeze(-1), mels, a1], dim=2) |
|
x = self.I(x) |
|
res = x |
|
x, _ = self.rnn1(x, h1) |
|
|
|
x = x + res |
|
res = x |
|
x = torch.cat([x, a2], dim=2) |
|
x, _ = self.rnn2(x, h2) |
|
|
|
x = x + res |
|
x = torch.cat([x, a3], dim=2) |
|
x = F.relu(self.fc1(x)) |
|
|
|
x = torch.cat([x, a4], dim=2) |
|
x = F.relu(self.fc2(x)) |
|
return self.fc3(x) |
|
|
|
def generate(self, mels, batched, target, overlap, mu_law, progress_callback=None): |
|
mu_law = mu_law if self.mode == 'RAW' else False |
|
progress_callback = progress_callback or self.gen_display |
|
|
|
self.eval() |
|
output = [] |
|
start = time.time() |
|
rnn1 = self.get_gru_cell(self.rnn1) |
|
rnn2 = self.get_gru_cell(self.rnn2) |
|
|
|
with torch.no_grad(): |
|
if torch.cuda.is_available(): |
|
mels = mels.cuda() |
|
else: |
|
mels = mels.cpu() |
|
wave_len = (mels.size(-1) - 1) * self.hop_length |
|
mels = self.pad_tensor(mels.transpose(1, 2), pad=self.pad, side='both') |
|
mels, aux = self.upsample(mels.transpose(1, 2)) |
|
|
|
if batched: |
|
mels = self.fold_with_overlap(mels, target, overlap) |
|
aux = self.fold_with_overlap(aux, target, overlap) |
|
|
|
b_size, seq_len, _ = mels.size() |
|
|
|
if torch.cuda.is_available(): |
|
h1 = torch.zeros(b_size, self.rnn_dims).cuda() |
|
h2 = torch.zeros(b_size, self.rnn_dims).cuda() |
|
x = torch.zeros(b_size, 1).cuda() |
|
else: |
|
h1 = torch.zeros(b_size, self.rnn_dims).cpu() |
|
h2 = torch.zeros(b_size, self.rnn_dims).cpu() |
|
x = torch.zeros(b_size, 1).cpu() |
|
|
|
d = self.aux_dims |
|
aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)] |
|
|
|
for i in range(seq_len): |
|
|
|
m_t = mels[:, i, :] |
|
|
|
a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split) |
|
|
|
x = torch.cat([x, m_t, a1_t], dim=1) |
|
x = self.I(x) |
|
h1 = rnn1(x, h1) |
|
|
|
x = x + h1 |
|
inp = torch.cat([x, a2_t], dim=1) |
|
h2 = rnn2(inp, h2) |
|
|
|
x = x + h2 |
|
x = torch.cat([x, a3_t], dim=1) |
|
x = F.relu(self.fc1(x)) |
|
|
|
x = torch.cat([x, a4_t], dim=1) |
|
x = F.relu(self.fc2(x)) |
|
|
|
logits = self.fc3(x) |
|
|
|
if self.mode == 'MOL': |
|
sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2)) |
|
output.append(sample.view(-1)) |
|
if torch.cuda.is_available(): |
|
|
|
x = sample.transpose(0, 1).cuda() |
|
else: |
|
x = sample.transpose(0, 1) |
|
|
|
elif self.mode == 'RAW' : |
|
posterior = F.softmax(logits, dim=1) |
|
distrib = torch.distributions.Categorical(posterior) |
|
|
|
sample = 2 * distrib.sample().float() / (self.n_classes - 1.) - 1. |
|
output.append(sample) |
|
x = sample.unsqueeze(-1) |
|
else: |
|
raise RuntimeError("Unknown model mode value - ", self.mode) |
|
|
|
if i % 100 == 0: |
|
gen_rate = (i + 1) / (time.time() - start) * b_size / 1000 |
|
progress_callback(i, seq_len, b_size, gen_rate) |
|
|
|
output = torch.stack(output).transpose(0, 1) |
|
output = output.cpu().numpy() |
|
output = output.astype(np.float64) |
|
|
|
if batched: |
|
output = self.xfade_and_unfold(output, target, overlap) |
|
else: |
|
output = output[0] |
|
|
|
if mu_law: |
|
output = decode_mu_law(output, self.n_classes, False) |
|
if hp.apply_preemphasis: |
|
output = de_emphasis(output) |
|
|
|
|
|
fade_out = np.linspace(1, 0, 20 * self.hop_length) |
|
output = output[:wave_len] |
|
output[-20 * self.hop_length:] *= fade_out |
|
|
|
self.train() |
|
|
|
return output |
|
|
|
|
|
def gen_display(self, i, seq_len, b_size, gen_rate): |
|
pbar = progbar(i, seq_len) |
|
msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | ' |
|
stream(msg) |
|
|
|
def get_gru_cell(self, gru): |
|
gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size) |
|
gru_cell.weight_hh.data = gru.weight_hh_l0.data |
|
gru_cell.weight_ih.data = gru.weight_ih_l0.data |
|
gru_cell.bias_hh.data = gru.bias_hh_l0.data |
|
gru_cell.bias_ih.data = gru.bias_ih_l0.data |
|
return gru_cell |
|
|
|
def pad_tensor(self, x, pad, side='both'): |
|
|
|
|
|
b, t, c = x.size() |
|
total = t + 2 * pad if side == 'both' else t + pad |
|
if torch.cuda.is_available(): |
|
padded = torch.zeros(b, total, c).cuda() |
|
else: |
|
padded = torch.zeros(b, total, c).cpu() |
|
if side == 'before' or side == 'both': |
|
padded[:, pad:pad + t, :] = x |
|
elif side == 'after': |
|
padded[:, :t, :] = x |
|
return padded |
|
|
|
def fold_with_overlap(self, x, target, overlap): |
|
|
|
''' Fold the tensor with overlap for quick batched inference. |
|
Overlap will be used for crossfading in xfade_and_unfold() |
|
|
|
Args: |
|
x (tensor) : Upsampled conditioning features. |
|
shape=(1, timesteps, features) |
|
target (int) : Target timesteps for each index of batch |
|
overlap (int) : Timesteps for both xfade and rnn warmup |
|
|
|
Return: |
|
(tensor) : shape=(num_folds, target + 2 * overlap, features) |
|
|
|
Details: |
|
x = [[h1, h2, ... hn]] |
|
|
|
Where each h is a vector of conditioning features |
|
|
|
Eg: target=2, overlap=1 with x.size(1)=10 |
|
|
|
folded = [[h1, h2, h3, h4], |
|
[h4, h5, h6, h7], |
|
[h7, h8, h9, h10]] |
|
''' |
|
|
|
_, total_len, features = x.size() |
|
|
|
|
|
num_folds = (total_len - overlap) // (target + overlap) |
|
extended_len = num_folds * (overlap + target) + overlap |
|
remaining = total_len - extended_len |
|
|
|
|
|
if remaining != 0: |
|
num_folds += 1 |
|
padding = target + 2 * overlap - remaining |
|
x = self.pad_tensor(x, padding, side='after') |
|
|
|
if torch.cuda.is_available(): |
|
folded = torch.zeros(num_folds, target + 2 * overlap, features).cuda() |
|
else: |
|
folded = torch.zeros(num_folds, target + 2 * overlap, features).cpu() |
|
|
|
|
|
for i in range(num_folds): |
|
start = i * (target + overlap) |
|
end = start + target + 2 * overlap |
|
folded[i] = x[:, start:end, :] |
|
|
|
return folded |
|
|
|
def xfade_and_unfold(self, y, target, overlap): |
|
|
|
''' Applies a crossfade and unfolds into a 1d array. |
|
|
|
Args: |
|
y (ndarry) : Batched sequences of audio samples |
|
shape=(num_folds, target + 2 * overlap) |
|
dtype=np.float64 |
|
overlap (int) : Timesteps for both xfade and rnn warmup |
|
|
|
Return: |
|
(ndarry) : audio samples in a 1d array |
|
shape=(total_len) |
|
dtype=np.float64 |
|
|
|
Details: |
|
y = [[seq1], |
|
[seq2], |
|
[seq3]] |
|
|
|
Apply a gain envelope at both ends of the sequences |
|
|
|
y = [[seq1_in, seq1_target, seq1_out], |
|
[seq2_in, seq2_target, seq2_out], |
|
[seq3_in, seq3_target, seq3_out]] |
|
|
|
Stagger and add up the groups of samples: |
|
|
|
[seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...] |
|
|
|
''' |
|
|
|
num_folds, length = y.shape |
|
target = length - 2 * overlap |
|
total_len = num_folds * (target + overlap) + overlap |
|
|
|
|
|
silence_len = overlap // 2 |
|
fade_len = overlap - silence_len |
|
silence = np.zeros((silence_len), dtype=np.float64) |
|
|
|
|
|
t = np.linspace(-1, 1, fade_len, dtype=np.float64) |
|
fade_in = np.sqrt(0.5 * (1 + t)) |
|
fade_out = np.sqrt(0.5 * (1 - t)) |
|
|
|
|
|
fade_in = np.concatenate([silence, fade_in]) |
|
fade_out = np.concatenate([fade_out, silence]) |
|
|
|
|
|
y[:, :overlap] *= fade_in |
|
y[:, -overlap:] *= fade_out |
|
|
|
unfolded = np.zeros((total_len), dtype=np.float64) |
|
|
|
|
|
for i in range(num_folds): |
|
start = i * (target + overlap) |
|
end = start + target + 2 * overlap |
|
unfolded[start:end] += y[i] |
|
|
|
return unfolded |
|
|
|
def get_step(self) : |
|
return self.step.data.item() |
|
|
|
def checkpoint(self, model_dir, optimizer) : |
|
k_steps = self.get_step() // 1000 |
|
self.save(model_dir.joinpath("checkpoint_%dk_steps.pt" % k_steps), optimizer) |
|
|
|
def log(self, path, msg) : |
|
with open(path, 'a') as f: |
|
print(msg, file=f) |
|
|
|
def load(self, path, optimizer) : |
|
checkpoint = torch.load(path) |
|
if "optimizer_state" in checkpoint: |
|
self.load_state_dict(checkpoint["model_state"]) |
|
optimizer.load_state_dict(checkpoint["optimizer_state"]) |
|
else: |
|
|
|
self.load_state_dict(checkpoint) |
|
|
|
def save(self, path, optimizer) : |
|
torch.save({ |
|
"model_state": self.state_dict(), |
|
"optimizer_state": optimizer.state_dict(), |
|
}, path) |
|
|
|
def num_params(self, print_out=True): |
|
parameters = filter(lambda p: p.requires_grad, self.parameters()) |
|
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 |
|
if print_out : |
|
print('Trainable Parameters: %.3fM' % parameters) |
|
|