|
|
|
|
|
|
|
import argparse |
|
import glob |
|
import os |
|
|
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
|
|
from TTS.config import load_config |
|
from TTS.tts.datasets import load_tts_samples |
|
from TTS.utils.audio import AudioProcessor |
|
|
|
|
|
def main(): |
|
"""Run preprocessing process.""" |
|
parser = argparse.ArgumentParser(description="Compute mean and variance of spectrogtram features.") |
|
parser.add_argument("config_path", type=str, help="TTS config file path to define audio processin parameters.") |
|
parser.add_argument("out_path", type=str, help="save path (directory and filename).") |
|
parser.add_argument( |
|
"--data_path", |
|
type=str, |
|
required=False, |
|
help="folder including the target set of wavs overriding dataset config.", |
|
) |
|
args, overrides = parser.parse_known_args() |
|
|
|
CONFIG = load_config(args.config_path) |
|
CONFIG.parse_known_args(overrides, relaxed_parser=True) |
|
|
|
|
|
CONFIG.audio.signal_norm = False |
|
CONFIG.audio.stats_path = None |
|
|
|
|
|
ap = AudioProcessor(**CONFIG.audio.to_dict()) |
|
|
|
|
|
if args.data_path: |
|
dataset_items = glob.glob(os.path.join(args.data_path, "**", "*.wav"), recursive=True) |
|
else: |
|
dataset_items = load_tts_samples(CONFIG.datasets)[0] |
|
print(f" > There are {len(dataset_items)} files.") |
|
|
|
mel_sum = 0 |
|
mel_square_sum = 0 |
|
linear_sum = 0 |
|
linear_square_sum = 0 |
|
N = 0 |
|
for item in tqdm(dataset_items): |
|
|
|
wav = ap.load_wav(item if isinstance(item, str) else item["audio_file"]) |
|
linear = ap.spectrogram(wav) |
|
mel = ap.melspectrogram(wav) |
|
|
|
|
|
N += mel.shape[1] |
|
mel_sum += mel.sum(1) |
|
linear_sum += linear.sum(1) |
|
mel_square_sum += (mel**2).sum(axis=1) |
|
linear_square_sum += (linear**2).sum(axis=1) |
|
|
|
mel_mean = mel_sum / N |
|
mel_scale = np.sqrt(mel_square_sum / N - mel_mean**2) |
|
linear_mean = linear_sum / N |
|
linear_scale = np.sqrt(linear_square_sum / N - linear_mean**2) |
|
|
|
output_file_path = args.out_path |
|
stats = {} |
|
stats["mel_mean"] = mel_mean |
|
stats["mel_std"] = mel_scale |
|
stats["linear_mean"] = linear_mean |
|
stats["linear_std"] = linear_scale |
|
|
|
print(f" > Avg mel spec mean: {mel_mean.mean()}") |
|
print(f" > Avg mel spec scale: {mel_scale.mean()}") |
|
print(f" > Avg linear spec mean: {linear_mean.mean()}") |
|
print(f" > Avg linear spec scale: {linear_scale.mean()}") |
|
|
|
|
|
CONFIG.audio.stats_path = output_file_path |
|
CONFIG.audio.signal_norm = True |
|
|
|
del CONFIG.audio.max_norm |
|
del CONFIG.audio.min_level_db |
|
del CONFIG.audio.symmetric_norm |
|
del CONFIG.audio.clip_norm |
|
stats["audio_config"] = CONFIG.audio.to_dict() |
|
np.save(output_file_path, stats, allow_pickle=True) |
|
print(f" > stats saved to {output_file_path}") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|