|
|
|
|
|
import math |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
|
|
class GroupNorm32(nn.GroupNorm): |
|
def forward(self, x): |
|
return super().forward(x.float()).type(x.dtype) |
|
|
|
|
|
def conv_nd(dims, *args, **kwargs): |
|
if dims == 1: |
|
return nn.Conv1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.Conv2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.Conv3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
def normalization(channels): |
|
groups = 32 |
|
if channels <= 16: |
|
groups = 8 |
|
elif channels <= 64: |
|
groups = 16 |
|
while channels % groups != 0: |
|
groups = int(groups / 2) |
|
assert groups > 2 |
|
return GroupNorm32(groups, channels) |
|
|
|
|
|
def zero_module(module): |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
class QKVAttention(nn.Module): |
|
def __init__(self, n_heads): |
|
super().__init__() |
|
self.n_heads = n_heads |
|
|
|
def forward(self, qkv, mask=None, qk_bias=0): |
|
""" |
|
Apply QKV attention. |
|
|
|
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. |
|
:return: an [N x (H * C) x T] tensor after attention. |
|
""" |
|
bs, width, length = qkv.shape |
|
assert width % (3 * self.n_heads) == 0 |
|
ch = width // (3 * self.n_heads) |
|
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) |
|
scale = 1 / math.sqrt(math.sqrt(ch)) |
|
weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) |
|
weight = weight + qk_bias |
|
if mask is not None: |
|
mask = mask.repeat(self.n_heads, 1, 1) |
|
weight[mask.logical_not()] = -torch.inf |
|
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) |
|
a = torch.einsum("bts,bcs->bct", weight, v) |
|
|
|
return a.reshape(bs, -1, length) |
|
|
|
|
|
class AttentionBlock(nn.Module): |
|
"""An attention block that allows spatial positions to attend to each other.""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
num_heads=1, |
|
num_head_channels=-1, |
|
out_channels=None, |
|
do_activation=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
out_channels = channels if out_channels is None else out_channels |
|
self.do_activation = do_activation |
|
if num_head_channels == -1: |
|
self.num_heads = num_heads |
|
else: |
|
assert ( |
|
channels % num_head_channels == 0 |
|
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" |
|
self.num_heads = channels // num_head_channels |
|
self.norm = normalization(channels) |
|
self.qkv = conv_nd(1, channels, out_channels * 3, 1) |
|
self.attention = QKVAttention(self.num_heads) |
|
|
|
self.x_proj = nn.Identity() if out_channels == channels else conv_nd(1, channels, out_channels, 1) |
|
self.proj_out = zero_module(conv_nd(1, out_channels, out_channels, 1)) |
|
|
|
def forward(self, x, mask=None, qk_bias=0): |
|
b, c, *spatial = x.shape |
|
if mask is not None: |
|
if len(mask.shape) == 2: |
|
mask = mask.unsqueeze(0).repeat(x.shape[0], 1, 1) |
|
if mask.shape[1] != x.shape[-1]: |
|
mask = mask[:, : x.shape[-1], : x.shape[-1]] |
|
|
|
x = x.reshape(b, c, -1) |
|
x = self.norm(x) |
|
if self.do_activation: |
|
x = F.silu(x, inplace=True) |
|
qkv = self.qkv(x) |
|
h = self.attention(qkv, mask=mask, qk_bias=qk_bias) |
|
h = self.proj_out(h) |
|
xp = self.x_proj(x) |
|
return (xp + h).reshape(b, xp.shape[1], *spatial) |
|
|
|
|
|
class ConditioningEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
spec_dim, |
|
embedding_dim, |
|
attn_blocks=6, |
|
num_attn_heads=4, |
|
): |
|
super().__init__() |
|
attn = [] |
|
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1) |
|
for a in range(attn_blocks): |
|
attn.append(AttentionBlock(embedding_dim, num_attn_heads)) |
|
self.attn = nn.Sequential(*attn) |
|
self.dim = embedding_dim |
|
|
|
def forward(self, x): |
|
""" |
|
x: (b, 80, s) |
|
""" |
|
h = self.init(x) |
|
h = self.attn(h) |
|
return h |
|
|