|
import math |
|
|
|
import torch |
|
from torch import nn |
|
from transformers import GPT2PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions |
|
|
|
|
|
class GPT2InferenceModel(GPT2PreTrainedModel): |
|
"""Override GPT2LMHeadModel to allow for prefix conditioning.""" |
|
|
|
def __init__(self, config, gpt, pos_emb, embeddings, norm, linear, kv_cache): |
|
super().__init__(config) |
|
self.transformer = gpt |
|
self.pos_embedding = pos_emb |
|
self.embeddings = embeddings |
|
self.final_norm = norm |
|
self.lm_head = nn.Sequential(norm, linear) |
|
self.kv_cache = kv_cache |
|
|
|
def store_prefix_emb(self, prefix_emb): |
|
self.cached_prefix_emb = prefix_emb |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): |
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
if not self.kv_cache: |
|
past_key_values = None |
|
|
|
|
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values is not None: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
else: |
|
position_ids = None |
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
assert self.cached_prefix_emb is not None |
|
assert inputs_embeds is None |
|
assert labels is None |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
|
prefix_len = self.cached_prefix_emb.shape[1] |
|
if input_ids.shape[1] != 1: |
|
gen_inputs = input_ids[:, prefix_len:] |
|
gen_emb = self.embeddings(gen_inputs) |
|
gen_emb = gen_emb + self.pos_embedding(gen_emb) |
|
if self.cached_prefix_emb.shape[0] != gen_emb.shape[0]: |
|
prefix_emb = self.cached_prefix_emb.repeat_interleave( |
|
gen_emb.shape[0] // self.cached_prefix_emb.shape[0], 0 |
|
) |
|
else: |
|
prefix_emb = self.cached_prefix_emb.to(gen_emb.dtype) |
|
emb = torch.cat([prefix_emb, gen_emb], dim=1) |
|
else: |
|
emb = self.embeddings(input_ids) |
|
emb = emb + self.pos_embedding.get_fixed_embedding( |
|
attention_mask.shape[1] - (prefix_len + 1), attention_mask.device |
|
) |
|
transformer_outputs = self.transformer( |
|
inputs_embeds=emb, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
if not return_dict: |
|
return (lm_logits,) + transformer_outputs[1:] |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=None, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
cross_attentions=transformer_outputs.cross_attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache(past, beam_idx): |
|
""" |
|
This function is used to re-order the :obj:`past_key_values` cache if |
|
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is |
|
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. |
|
""" |
|
return tuple( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) |
|
for layer_past in past |
|
) |
|
|