|
import torch |
|
from torch import nn |
|
from torch.nn.modules.conv import Conv1d |
|
|
|
from TTS.vocoder.models.hifigan_discriminator import DiscriminatorP, MultiPeriodDiscriminator |
|
|
|
|
|
class DiscriminatorS(torch.nn.Module): |
|
"""HiFiGAN Scale Discriminator. Channel sizes are different from the original HiFiGAN. |
|
|
|
Args: |
|
use_spectral_norm (bool): if `True` swith to spectral norm instead of weight norm. |
|
""" |
|
|
|
def __init__(self, use_spectral_norm=False): |
|
super().__init__() |
|
norm_f = nn.utils.spectral_norm if use_spectral_norm else nn.utils.parametrizations.weight_norm |
|
self.convs = nn.ModuleList( |
|
[ |
|
norm_f(Conv1d(1, 16, 15, 1, padding=7)), |
|
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), |
|
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), |
|
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), |
|
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), |
|
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), |
|
] |
|
) |
|
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x (Tensor): input waveform. |
|
|
|
Returns: |
|
Tensor: discriminator scores. |
|
List[Tensor]: list of features from the convolutiona layers. |
|
""" |
|
feat = [] |
|
for l in self.convs: |
|
x = l(x) |
|
x = torch.nn.functional.leaky_relu(x, 0.1) |
|
feat.append(x) |
|
x = self.conv_post(x) |
|
feat.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
return x, feat |
|
|
|
|
|
class VitsDiscriminator(nn.Module): |
|
"""VITS discriminator wrapping one Scale Discriminator and a stack of Period Discriminator. |
|
|
|
:: |
|
waveform -> ScaleDiscriminator() -> scores_sd, feats_sd --> append() -> scores, feats |
|
|--> MultiPeriodDiscriminator() -> scores_mpd, feats_mpd ^ |
|
|
|
Args: |
|
use_spectral_norm (bool): if `True` swith to spectral norm instead of weight norm. |
|
""" |
|
|
|
def __init__(self, periods=(2, 3, 5, 7, 11), use_spectral_norm=False): |
|
super().__init__() |
|
self.nets = nn.ModuleList() |
|
self.nets.append(DiscriminatorS(use_spectral_norm=use_spectral_norm)) |
|
self.nets.extend([DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]) |
|
|
|
def forward(self, x, x_hat=None): |
|
""" |
|
Args: |
|
x (Tensor): ground truth waveform. |
|
x_hat (Tensor): predicted waveform. |
|
|
|
Returns: |
|
List[Tensor]: discriminator scores. |
|
List[List[Tensor]]: list of list of features from each layers of each discriminator. |
|
""" |
|
x_scores = [] |
|
x_hat_scores = [] if x_hat is not None else None |
|
x_feats = [] |
|
x_hat_feats = [] if x_hat is not None else None |
|
for net in self.nets: |
|
x_score, x_feat = net(x) |
|
x_scores.append(x_score) |
|
x_feats.append(x_feat) |
|
if x_hat is not None: |
|
x_hat_score, x_hat_feat = net(x_hat) |
|
x_hat_scores.append(x_hat_score) |
|
x_hat_feats.append(x_hat_feat) |
|
return x_scores, x_feats, x_hat_scores, x_hat_feats |
|
|