|
import torch |
|
import torchaudio |
|
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2ForCTC |
|
|
|
|
|
def max_alignment(s1, s2, skip_character="~", record=None): |
|
""" |
|
A clever function that aligns s1 to s2 as best it can. Wherever a character from s1 is not found in s2, a '~' is |
|
used to replace that character. |
|
|
|
Finally got to use my DP skills! |
|
""" |
|
if record is None: |
|
record = {} |
|
assert skip_character not in s1, f"Found the skip character {skip_character} in the provided string, {s1}" |
|
if len(s1) == 0: |
|
return "" |
|
if len(s2) == 0: |
|
return skip_character * len(s1) |
|
if s1 == s2: |
|
return s1 |
|
if s1[0] == s2[0]: |
|
return s1[0] + max_alignment(s1[1:], s2[1:], skip_character, record) |
|
|
|
take_s1_key = (len(s1), len(s2) - 1) |
|
if take_s1_key in record: |
|
take_s1, take_s1_score = record[take_s1_key] |
|
else: |
|
take_s1 = max_alignment(s1, s2[1:], skip_character, record) |
|
take_s1_score = len(take_s1.replace(skip_character, "")) |
|
record[take_s1_key] = (take_s1, take_s1_score) |
|
|
|
take_s2_key = (len(s1) - 1, len(s2)) |
|
if take_s2_key in record: |
|
take_s2, take_s2_score = record[take_s2_key] |
|
else: |
|
take_s2 = max_alignment(s1[1:], s2, skip_character, record) |
|
take_s2_score = len(take_s2.replace(skip_character, "")) |
|
record[take_s2_key] = (take_s2, take_s2_score) |
|
|
|
return take_s1 if take_s1_score > take_s2_score else skip_character + take_s2 |
|
|
|
|
|
class Wav2VecAlignment: |
|
""" |
|
Uses wav2vec2 to perform audio<->text alignment. |
|
""" |
|
|
|
def __init__(self, device="cuda"): |
|
self.model = Wav2Vec2ForCTC.from_pretrained("jbetker/wav2vec2-large-robust-ft-libritts-voxpopuli").cpu() |
|
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-large-960h") |
|
self.tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("jbetker/tacotron-symbols") |
|
self.device = device |
|
|
|
def align(self, audio, expected_text, audio_sample_rate=24000): |
|
orig_len = audio.shape[-1] |
|
|
|
with torch.no_grad(): |
|
self.model = self.model.to(self.device) |
|
audio = audio.to(self.device) |
|
audio = torchaudio.functional.resample(audio, audio_sample_rate, 16000) |
|
clip_norm = (audio - audio.mean()) / torch.sqrt(audio.var() + 1e-7) |
|
logits = self.model(clip_norm).logits |
|
self.model = self.model.cpu() |
|
|
|
logits = logits[0] |
|
pred_string = self.tokenizer.decode(logits.argmax(-1).tolist()) |
|
|
|
fixed_expectation = max_alignment(expected_text.lower(), pred_string) |
|
w2v_compression = orig_len // logits.shape[0] |
|
expected_tokens = self.tokenizer.encode(fixed_expectation) |
|
expected_chars = list(fixed_expectation) |
|
if len(expected_tokens) == 1: |
|
return [0] |
|
expected_tokens.pop(0) |
|
expected_chars.pop(0) |
|
|
|
alignments = [0] |
|
|
|
def pop_till_you_win(): |
|
if len(expected_tokens) == 0: |
|
return None |
|
popped = expected_tokens.pop(0) |
|
popped_char = expected_chars.pop(0) |
|
while popped_char == "~": |
|
alignments.append(-1) |
|
if len(expected_tokens) == 0: |
|
return None |
|
popped = expected_tokens.pop(0) |
|
popped_char = expected_chars.pop(0) |
|
return popped |
|
|
|
next_expected_token = pop_till_you_win() |
|
for i, logit in enumerate(logits): |
|
top = logit.argmax() |
|
if next_expected_token == top: |
|
alignments.append(i * w2v_compression) |
|
if len(expected_tokens) > 0: |
|
next_expected_token = pop_till_you_win() |
|
else: |
|
break |
|
|
|
pop_till_you_win() |
|
if not (len(expected_tokens) == 0 and len(alignments) == len(expected_text)): |
|
torch.save([audio, expected_text], "alignment_debug.pth") |
|
assert False, ( |
|
"Something went wrong with the alignment algorithm. I've dumped a file, 'alignment_debug.pth' to" |
|
"your current working directory. Please report this along with the file so it can get fixed." |
|
) |
|
|
|
|
|
alignments.append(orig_len) |
|
for i in range(len(alignments)): |
|
if alignments[i] == -1: |
|
for j in range(i + 1, len(alignments)): |
|
if alignments[j] != -1: |
|
next_found_token = j |
|
break |
|
for j in range(i, next_found_token): |
|
gap = alignments[next_found_token] - alignments[i - 1] |
|
alignments[j] = (j - i + 1) * gap // (next_found_token - i + 1) + alignments[i - 1] |
|
|
|
return alignments[:-1] |
|
|
|
def redact(self, audio, expected_text, audio_sample_rate=24000): |
|
if "[" not in expected_text: |
|
return audio |
|
splitted = expected_text.split("[") |
|
fully_split = [splitted[0]] |
|
for spl in splitted[1:]: |
|
assert "]" in spl, 'Every "[" character must be paired with a "]" with no nesting.' |
|
fully_split.extend(spl.split("]")) |
|
|
|
|
|
non_redacted_intervals = [] |
|
last_point = 0 |
|
for i in range(len(fully_split)): |
|
if i % 2 == 0: |
|
end_interval = max(0, last_point + len(fully_split[i]) - 1) |
|
non_redacted_intervals.append((last_point, end_interval)) |
|
last_point += len(fully_split[i]) |
|
|
|
bare_text = "".join(fully_split) |
|
alignments = self.align(audio, bare_text, audio_sample_rate) |
|
|
|
output_audio = [] |
|
for nri in non_redacted_intervals: |
|
start, stop = nri |
|
output_audio.append(audio[:, alignments[start] : alignments[stop]]) |
|
return torch.cat(output_audio, dim=-1) |
|
|