|
from typing import Any |
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import torch |
|
|
|
|
|
def validate_numpy_array(value: Any): |
|
r""" |
|
Validates the input and makes sure it returns a numpy array (i.e on CPU) |
|
|
|
Args: |
|
value (Any): the input value |
|
|
|
Raises: |
|
TypeError: if the value is not a numpy array or torch tensor |
|
|
|
Returns: |
|
np.ndarray: numpy array of the value |
|
""" |
|
if isinstance(value, np.ndarray): |
|
pass |
|
elif isinstance(value, list): |
|
value = np.array(value) |
|
elif torch.is_tensor(value): |
|
value = value.cpu().numpy() |
|
else: |
|
raise TypeError("Value must be a numpy array, a torch tensor or a list") |
|
|
|
return value |
|
|
|
|
|
def get_spec_from_most_probable_state(log_alpha_scaled, means, decoder=None): |
|
"""Get the most probable state means from the log_alpha_scaled. |
|
|
|
Args: |
|
log_alpha_scaled (torch.Tensor): Log alpha scaled values. |
|
- Shape: :math:`(T, N)` |
|
means (torch.Tensor): Means of the states. |
|
- Shape: :math:`(N, T, D_out)` |
|
decoder (torch.nn.Module): Decoder module to decode the latent to melspectrogram. Defaults to None. |
|
""" |
|
max_state_numbers = torch.max(log_alpha_scaled, dim=1)[1] |
|
max_len = means.shape[0] |
|
n_mel_channels = means.shape[2] |
|
max_state_numbers = max_state_numbers.unsqueeze(1).unsqueeze(1).expand(max_len, 1, n_mel_channels) |
|
means = torch.gather(means, 1, max_state_numbers).squeeze(1).to(log_alpha_scaled.dtype) |
|
if decoder is not None: |
|
mel = ( |
|
decoder(means.T.unsqueeze(0), torch.tensor([means.shape[0]], device=means.device), reverse=True)[0] |
|
.squeeze(0) |
|
.T |
|
) |
|
else: |
|
mel = means |
|
return mel |
|
|
|
|
|
def plot_transition_probabilities_to_numpy(states, transition_probabilities, output_fig=False): |
|
"""Generates trainsition probabilities plot for the states and the probability of transition. |
|
|
|
Args: |
|
states (torch.IntTensor): the states |
|
transition_probabilities (torch.FloatTensor): the transition probabilities |
|
""" |
|
states = validate_numpy_array(states) |
|
transition_probabilities = validate_numpy_array(transition_probabilities) |
|
|
|
fig, ax = plt.subplots(figsize=(30, 3)) |
|
ax.plot(transition_probabilities, "o") |
|
ax.set_title("Transition probability of state") |
|
ax.set_xlabel("hidden state") |
|
ax.set_ylabel("probability") |
|
ax.set_xticks([i for i in range(len(transition_probabilities))]) |
|
ax.set_xticklabels([int(x) for x in states], rotation=90) |
|
plt.tight_layout() |
|
if not output_fig: |
|
plt.close() |
|
return fig |
|
|