|
""" |
|
Much of this code is adapted from Andrej Karpathy's NanoGPT |
|
(https://github.com/karpathy/nanoGPT) |
|
""" |
|
import math |
|
from dataclasses import dataclass |
|
|
|
import torch |
|
from coqpit import Coqpit |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
"""LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False""" |
|
|
|
def __init__(self, ndim, bias): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(ndim)) |
|
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None |
|
|
|
def forward(self, x): |
|
return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5) |
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) |
|
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) |
|
|
|
self.attn_dropout = nn.Dropout(config.dropout) |
|
self.resid_dropout = nn.Dropout(config.dropout) |
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
self.dropout = config.dropout |
|
|
|
self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention") |
|
if not self.flash: |
|
|
|
|
|
self.register_buffer( |
|
"bias", |
|
torch.tril(torch.ones(config.block_size, config.block_size)).view( |
|
1, 1, config.block_size, config.block_size |
|
), |
|
) |
|
|
|
def forward(self, x, past_kv=None, use_cache=False): |
|
B, T, C = x.size() |
|
|
|
|
|
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
|
|
if past_kv is not None: |
|
past_key = past_kv[0] |
|
past_value = past_kv[1] |
|
k = torch.cat((past_key, k), dim=-2) |
|
v = torch.cat((past_value, v), dim=-2) |
|
|
|
FULL_T = k.shape[-2] |
|
|
|
if use_cache is True: |
|
present = (k, v) |
|
else: |
|
present = None |
|
|
|
|
|
if self.flash: |
|
|
|
if past_kv is not None: |
|
|
|
|
|
|
|
|
|
is_causal = False |
|
else: |
|
is_causal = True |
|
|
|
|
|
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=self.dropout, is_causal=is_causal) |
|
else: |
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
att = att.masked_fill(self.bias[:, :, FULL_T - T : FULL_T, :FULL_T] == 0, float("-inf")) |
|
att = F.softmax(att, dim=-1) |
|
att = self.attn_dropout(att) |
|
y = att @ v |
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
|
|
y = self.resid_dropout(self.c_proj(y)) |
|
return (y, present) |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) |
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) |
|
self.dropout = nn.Dropout(config.dropout) |
|
self.gelu = nn.GELU() |
|
|
|
def forward(self, x): |
|
x = self.c_fc(x) |
|
x = self.gelu(x) |
|
x = self.c_proj(x) |
|
x = self.dropout(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, config, layer_idx): |
|
super().__init__() |
|
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) |
|
self.attn = CausalSelfAttention(config) |
|
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) |
|
self.mlp = MLP(config) |
|
self.layer_idx = layer_idx |
|
|
|
def forward(self, x, past_kv=None, use_cache=False): |
|
attn_output, prev_kvs = self.attn(self.ln_1(x), past_kv=past_kv, use_cache=use_cache) |
|
x = x + attn_output |
|
x = x + self.mlp(self.ln_2(x)) |
|
return (x, prev_kvs) |
|
|
|
|
|
@dataclass |
|
class GPTConfig(Coqpit): |
|
block_size: int = 1024 |
|
input_vocab_size: int = 10_048 |
|
output_vocab_size: int = 10_048 |
|
n_layer: int = 12 |
|
n_head: int = 12 |
|
n_embd: int = 768 |
|
dropout: float = 0.0 |
|
bias: bool = True |
|
|
|
|
|
class GPT(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.input_vocab_size is not None |
|
assert config.output_vocab_size is not None |
|
assert config.block_size is not None |
|
self.config = config |
|
|
|
self.transformer = nn.ModuleDict( |
|
dict( |
|
wte=nn.Embedding(config.input_vocab_size, config.n_embd), |
|
wpe=nn.Embedding(config.block_size, config.n_embd), |
|
drop=nn.Dropout(config.dropout), |
|
h=nn.ModuleList([Block(config, idx) for idx in range(config.n_layer)]), |
|
ln_f=LayerNorm(config.n_embd, bias=config.bias), |
|
) |
|
) |
|
self.lm_head = nn.Linear(config.n_embd, config.output_vocab_size, bias=False) |
|
|
|
def get_num_params(self, non_embedding=True): |
|
""" |
|
Return the number of parameters in the model. |
|
For non-embedding count (default), the position embeddings get subtracted. |
|
The token embeddings would too, except due to the parameter sharing these |
|
params are actually used as weights in the final layer, so we include them. |
|
""" |
|
n_params = sum(p.numel() for p in self.parameters()) |
|
if non_embedding: |
|
n_params -= self.transformer.wte.weight.numel() |
|
n_params -= self.transformer.wpe.weight.numel() |
|
return n_params |
|
|
|
def forward(self, idx, merge_context=False, past_kv=None, position_ids=None, use_cache=False): |
|
device = idx.device |
|
_, t = idx.size() |
|
if past_kv is not None: |
|
assert t == 1 |
|
tok_emb = self.transformer.wte(idx) |
|
else: |
|
if merge_context: |
|
assert idx.shape[1] >= 256 + 256 + 1 |
|
t = idx.shape[1] - 256 |
|
else: |
|
assert ( |
|
t <= self.config.block_size |
|
), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" |
|
|
|
|
|
if merge_context: |
|
tok_emb = torch.cat( |
|
[ |
|
self.transformer.wte(idx[:, :256]) + self.transformer.wte(idx[:, 256 : 256 + 256]), |
|
self.transformer.wte(idx[:, 256 + 256 :]), |
|
], |
|
dim=1, |
|
) |
|
else: |
|
tok_emb = self.transformer.wte(idx) |
|
|
|
if past_kv is None: |
|
past_length = 0 |
|
past_kv = tuple([None] * len(self.transformer.h)) |
|
else: |
|
past_length = past_kv[0][0].size(-2) |
|
|
|
if position_ids is None: |
|
position_ids = torch.arange(past_length, t + past_length, dtype=torch.long, device=device) |
|
position_ids = position_ids.unsqueeze(0) |
|
assert position_ids.shape == (1, t) |
|
|
|
pos_emb = self.transformer.wpe(position_ids) |
|
|
|
x = self.transformer.drop(tok_emb + pos_emb) |
|
|
|
new_kv = () if use_cache else None |
|
|
|
for _, (block, past_layer_kv) in enumerate(zip(self.transformer.h, past_kv)): |
|
x, kv = block(x, past_kv=past_layer_kv, use_cache=use_cache) |
|
|
|
if use_cache: |
|
new_kv = new_kv + (kv,) |
|
|
|
x = self.transformer.ln_f(x) |
|
|
|
|
|
logits = self.lm_head(x[:, [-1], :]) |
|
|
|
return (logits, new_kv) |
|
|