File size: 25,027 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
import torch
import torchaudio
from torch import nn
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn import functional as F
from torch.nn.utils.parametrizations import weight_norm
from torch.nn.utils.parametrize import remove_parametrizations

from TTS.utils.io import load_fsspec

LRELU_SLOPE = 0.1


def get_padding(k, d):
    return int((k * d - d) / 2)


class ResBlock1(torch.nn.Module):
    """Residual Block Type 1. It has 3 convolutional layers in each convolutional block.

    Network::

        x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o
        |--------------------------------------------------------------------------------------------------|


    Args:
        channels (int): number of hidden channels for the convolutional layers.
        kernel_size (int): size of the convolution filter in each layer.
        dilations (list): list of dilation value for each conv layer in a block.
    """

    def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
        super().__init__()
        self.convs1 = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[0],
                        padding=get_padding(kernel_size, dilation[0]),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[1],
                        padding=get_padding(kernel_size, dilation[1]),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[2],
                        padding=get_padding(kernel_size, dilation[2]),
                    )
                ),
            ]
        )

        self.convs2 = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
            ]
        )

    def forward(self, x):
        """
        Args:
            x (Tensor): input tensor.
        Returns:
            Tensor: output tensor.
        Shapes:
            x: [B, C, T]
        """
        for c1, c2 in zip(self.convs1, self.convs2):
            xt = F.leaky_relu(x, LRELU_SLOPE)
            xt = c1(xt)
            xt = F.leaky_relu(xt, LRELU_SLOPE)
            xt = c2(xt)
            x = xt + x
        return x

    def remove_weight_norm(self):
        for l in self.convs1:
            remove_parametrizations(l, "weight")
        for l in self.convs2:
            remove_parametrizations(l, "weight")


class ResBlock2(torch.nn.Module):
    """Residual Block Type 2. It has 1 convolutional layers in each convolutional block.

    Network::

        x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o
        |---------------------------------------------------|


    Args:
        channels (int): number of hidden channels for the convolutional layers.
        kernel_size (int): size of the convolution filter in each layer.
        dilations (list): list of dilation value for each conv layer in a block.
    """

    def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
        super().__init__()
        self.convs = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[0],
                        padding=get_padding(kernel_size, dilation[0]),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[1],
                        padding=get_padding(kernel_size, dilation[1]),
                    )
                ),
            ]
        )

    def forward(self, x):
        for c in self.convs:
            xt = F.leaky_relu(x, LRELU_SLOPE)
            xt = c(xt)
            x = xt + x
        return x

    def remove_weight_norm(self):
        for l in self.convs:
            remove_parametrizations(l, "weight")


class HifiganGenerator(torch.nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        resblock_type,
        resblock_dilation_sizes,
        resblock_kernel_sizes,
        upsample_kernel_sizes,
        upsample_initial_channel,
        upsample_factors,
        inference_padding=5,
        cond_channels=0,
        conv_pre_weight_norm=True,
        conv_post_weight_norm=True,
        conv_post_bias=True,
        cond_in_each_up_layer=False,
    ):
        r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF)

        Network:
            x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o
                                                 ..          -> zI ---|
                                              resblockN_kNx1 -> zN ---'

        Args:
            in_channels (int): number of input tensor channels.
            out_channels (int): number of output tensor channels.
            resblock_type (str): type of the `ResBlock`. '1' or '2'.
            resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`.
            resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`.
            upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution.
            upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2
                for each consecutive upsampling layer.
            upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer.
            inference_padding (int): constant padding applied to the input at inference time. Defaults to 5.
        """
        super().__init__()
        self.inference_padding = inference_padding
        self.num_kernels = len(resblock_kernel_sizes)
        self.num_upsamples = len(upsample_factors)
        self.cond_in_each_up_layer = cond_in_each_up_layer

        # initial upsampling layers
        self.conv_pre = weight_norm(Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3))
        resblock = ResBlock1 if resblock_type == "1" else ResBlock2
        # upsampling layers
        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)):
            self.ups.append(
                weight_norm(
                    ConvTranspose1d(
                        upsample_initial_channel // (2**i),
                        upsample_initial_channel // (2 ** (i + 1)),
                        k,
                        u,
                        padding=(k - u) // 2,
                    )
                )
            )
        # MRF blocks
        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch = upsample_initial_channel // (2 ** (i + 1))
            for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
                self.resblocks.append(resblock(ch, k, d))
        # post convolution layer
        self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias))
        if cond_channels > 0:
            self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1)

        if not conv_pre_weight_norm:
            remove_parametrizations(self.conv_pre, "weight")

        if not conv_post_weight_norm:
            remove_parametrizations(self.conv_post, "weight")

        if self.cond_in_each_up_layer:
            self.conds = nn.ModuleList()
            for i in range(len(self.ups)):
                ch = upsample_initial_channel // (2 ** (i + 1))
                self.conds.append(nn.Conv1d(cond_channels, ch, 1))

    def forward(self, x, g=None):
        """
        Args:
            x (Tensor): feature input tensor.
            g (Tensor): global conditioning input tensor.

        Returns:
            Tensor: output waveform.

        Shapes:
            x: [B, C, T]
            Tensor: [B, 1, T]
        """
        o = self.conv_pre(x)
        if hasattr(self, "cond_layer"):
            o = o + self.cond_layer(g)
        for i in range(self.num_upsamples):
            o = F.leaky_relu(o, LRELU_SLOPE)
            o = self.ups[i](o)

            if self.cond_in_each_up_layer:
                o = o + self.conds[i](g)

            z_sum = None
            for j in range(self.num_kernels):
                if z_sum is None:
                    z_sum = self.resblocks[i * self.num_kernels + j](o)
                else:
                    z_sum += self.resblocks[i * self.num_kernels + j](o)
            o = z_sum / self.num_kernels
        o = F.leaky_relu(o)
        o = self.conv_post(o)
        o = torch.tanh(o)
        return o

    @torch.no_grad()
    def inference(self, c):
        """
        Args:
            x (Tensor): conditioning input tensor.

        Returns:
            Tensor: output waveform.

        Shapes:
            x: [B, C, T]
            Tensor: [B, 1, T]
        """
        c = c.to(self.conv_pre.weight.device)
        c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate")
        return self.forward(c)

    def remove_weight_norm(self):
        print("Removing weight norm...")
        for l in self.ups:
            remove_parametrizations(l, "weight")
        for l in self.resblocks:
            l.remove_weight_norm()
        remove_parametrizations(self.conv_pre, "weight")
        remove_parametrizations(self.conv_post, "weight")

    def load_checkpoint(
        self, config, checkpoint_path, eval=False, cache=False
    ):  # pylint: disable=unused-argument, redefined-builtin
        state = torch.load(checkpoint_path, map_location=torch.device("cpu"))
        self.load_state_dict(state["model"])
        if eval:
            self.eval()
            assert not self.training
            self.remove_weight_norm()


class SELayer(nn.Module):
    def __init__(self, channel, reduction=8):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel),
            nn.Sigmoid(),
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y


class SEBasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8):
        super(SEBasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.se = SELayer(planes, reduction)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.relu(out)
        out = self.bn1(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.se(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)
        return out


def set_init_dict(model_dict, checkpoint_state, c):
    # Partial initialization: if there is a mismatch with new and old layer, it is skipped.
    for k, v in checkpoint_state.items():
        if k not in model_dict:
            print(" | > Layer missing in the model definition: {}".format(k))
    # 1. filter out unnecessary keys
    pretrained_dict = {k: v for k, v in checkpoint_state.items() if k in model_dict}
    # 2. filter out different size layers
    pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()}
    # 3. skip reinit layers
    if c.has("reinit_layers") and c.reinit_layers is not None:
        for reinit_layer_name in c.reinit_layers:
            pretrained_dict = {k: v for k, v in pretrained_dict.items() if reinit_layer_name not in k}
    # 4. overwrite entries in the existing state dict
    model_dict.update(pretrained_dict)
    print(" | > {} / {} layers are restored.".format(len(pretrained_dict), len(model_dict)))
    return model_dict


class PreEmphasis(nn.Module):
    def __init__(self, coefficient=0.97):
        super().__init__()
        self.coefficient = coefficient
        self.register_buffer("filter", torch.FloatTensor([-self.coefficient, 1.0]).unsqueeze(0).unsqueeze(0))

    def forward(self, x):
        assert len(x.size()) == 2

        x = torch.nn.functional.pad(x.unsqueeze(1), (1, 0), "reflect")
        return torch.nn.functional.conv1d(x, self.filter).squeeze(1)


class ResNetSpeakerEncoder(nn.Module):
    """This is copied from 🐸TTS to remove it from the dependencies."""

    # pylint: disable=W0102
    def __init__(
        self,
        input_dim=64,
        proj_dim=512,
        layers=[3, 4, 6, 3],
        num_filters=[32, 64, 128, 256],
        encoder_type="ASP",
        log_input=False,
        use_torch_spec=False,
        audio_config=None,
    ):
        super(ResNetSpeakerEncoder, self).__init__()

        self.encoder_type = encoder_type
        self.input_dim = input_dim
        self.log_input = log_input
        self.use_torch_spec = use_torch_spec
        self.audio_config = audio_config
        self.proj_dim = proj_dim

        self.conv1 = nn.Conv2d(1, num_filters[0], kernel_size=3, stride=1, padding=1)
        self.relu = nn.ReLU(inplace=True)
        self.bn1 = nn.BatchNorm2d(num_filters[0])

        self.inplanes = num_filters[0]
        self.layer1 = self.create_layer(SEBasicBlock, num_filters[0], layers[0])
        self.layer2 = self.create_layer(SEBasicBlock, num_filters[1], layers[1], stride=(2, 2))
        self.layer3 = self.create_layer(SEBasicBlock, num_filters[2], layers[2], stride=(2, 2))
        self.layer4 = self.create_layer(SEBasicBlock, num_filters[3], layers[3], stride=(2, 2))

        self.instancenorm = nn.InstanceNorm1d(input_dim)

        if self.use_torch_spec:
            self.torch_spec = torch.nn.Sequential(
                PreEmphasis(audio_config["preemphasis"]),
                torchaudio.transforms.MelSpectrogram(
                    sample_rate=audio_config["sample_rate"],
                    n_fft=audio_config["fft_size"],
                    win_length=audio_config["win_length"],
                    hop_length=audio_config["hop_length"],
                    window_fn=torch.hamming_window,
                    n_mels=audio_config["num_mels"],
                ),
            )

        else:
            self.torch_spec = None

        outmap_size = int(self.input_dim / 8)

        self.attention = nn.Sequential(
            nn.Conv1d(num_filters[3] * outmap_size, 128, kernel_size=1),
            nn.ReLU(),
            nn.BatchNorm1d(128),
            nn.Conv1d(128, num_filters[3] * outmap_size, kernel_size=1),
            nn.Softmax(dim=2),
        )

        if self.encoder_type == "SAP":
            out_dim = num_filters[3] * outmap_size
        elif self.encoder_type == "ASP":
            out_dim = num_filters[3] * outmap_size * 2
        else:
            raise ValueError("Undefined encoder")

        self.fc = nn.Linear(out_dim, proj_dim)

        self._init_layers()

    def _init_layers(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def create_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    # pylint: disable=R0201
    def new_parameter(self, *size):
        out = nn.Parameter(torch.FloatTensor(*size))
        nn.init.xavier_normal_(out)
        return out

    def forward(self, x, l2_norm=False):
        """Forward pass of the model.

        Args:
            x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True`
                to compute the spectrogram on-the-fly.
            l2_norm (bool): Whether to L2-normalize the outputs.

        Shapes:
            - x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})`
        """
        x.squeeze_(1)
        # if you torch spec compute it otherwise use the mel spec computed by the AP
        if self.use_torch_spec:
            x = self.torch_spec(x)

        if self.log_input:
            x = (x + 1e-6).log()
        x = self.instancenorm(x).unsqueeze(1)

        x = self.conv1(x)
        x = self.relu(x)
        x = self.bn1(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = x.reshape(x.size()[0], -1, x.size()[-1])

        w = self.attention(x)

        if self.encoder_type == "SAP":
            x = torch.sum(x * w, dim=2)
        elif self.encoder_type == "ASP":
            mu = torch.sum(x * w, dim=2)
            sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu**2).clamp(min=1e-5))
            x = torch.cat((mu, sg), 1)

        x = x.view(x.size()[0], -1)
        x = self.fc(x)

        if l2_norm:
            x = torch.nn.functional.normalize(x, p=2, dim=1)
        return x

    def load_checkpoint(
        self,
        checkpoint_path: str,
        eval: bool = False,
        use_cuda: bool = False,
        criterion=None,
        cache=False,
    ):
        state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
        try:
            self.load_state_dict(state["model"])
            print(" > Model fully restored. ")
        except (KeyError, RuntimeError) as error:
            # If eval raise the error
            if eval:
                raise error

            print(" > Partial model initialization.")
            model_dict = self.state_dict()
            model_dict = set_init_dict(model_dict, state["model"])
            self.load_state_dict(model_dict)
            del model_dict

        # load the criterion for restore_path
        if criterion is not None and "criterion" in state:
            try:
                criterion.load_state_dict(state["criterion"])
            except (KeyError, RuntimeError) as error:
                print(" > Criterion load ignored because of:", error)

        if use_cuda:
            self.cuda()
            if criterion is not None:
                criterion = criterion.cuda()

        if eval:
            self.eval()
            assert not self.training

        if not eval:
            return criterion, state["step"]
        return criterion


class HifiDecoder(torch.nn.Module):
    def __init__(
        self,
        input_sample_rate=22050,
        output_sample_rate=24000,
        output_hop_length=256,
        ar_mel_length_compression=1024,
        decoder_input_dim=1024,
        resblock_type_decoder="1",
        resblock_dilation_sizes_decoder=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
        resblock_kernel_sizes_decoder=[3, 7, 11],
        upsample_rates_decoder=[8, 8, 2, 2],
        upsample_initial_channel_decoder=512,
        upsample_kernel_sizes_decoder=[16, 16, 4, 4],
        d_vector_dim=512,
        cond_d_vector_in_each_upsampling_layer=True,
        speaker_encoder_audio_config={
            "fft_size": 512,
            "win_length": 400,
            "hop_length": 160,
            "sample_rate": 16000,
            "preemphasis": 0.97,
            "num_mels": 64,
        },
    ):
        super().__init__()
        self.input_sample_rate = input_sample_rate
        self.output_sample_rate = output_sample_rate
        self.output_hop_length = output_hop_length
        self.ar_mel_length_compression = ar_mel_length_compression
        self.speaker_encoder_audio_config = speaker_encoder_audio_config
        self.waveform_decoder = HifiganGenerator(
            decoder_input_dim,
            1,
            resblock_type_decoder,
            resblock_dilation_sizes_decoder,
            resblock_kernel_sizes_decoder,
            upsample_kernel_sizes_decoder,
            upsample_initial_channel_decoder,
            upsample_rates_decoder,
            inference_padding=0,
            cond_channels=d_vector_dim,
            conv_pre_weight_norm=False,
            conv_post_weight_norm=False,
            conv_post_bias=False,
            cond_in_each_up_layer=cond_d_vector_in_each_upsampling_layer,
        )
        self.speaker_encoder = ResNetSpeakerEncoder(
            input_dim=64,
            proj_dim=512,
            log_input=True,
            use_torch_spec=True,
            audio_config=speaker_encoder_audio_config,
        )

    @property
    def device(self):
        return next(self.parameters()).device

    def forward(self, latents, g=None):
        """
        Args:
            x (Tensor): feature input tensor (GPT latent).
            g (Tensor): global conditioning input tensor.

        Returns:
            Tensor: output waveform.

        Shapes:
            x: [B, C, T]
            Tensor: [B, 1, T]
        """

        z = torch.nn.functional.interpolate(
            latents.transpose(1, 2),
            scale_factor=[self.ar_mel_length_compression / self.output_hop_length],
            mode="linear",
        ).squeeze(1)
        # upsample to the right sr
        if self.output_sample_rate != self.input_sample_rate:
            z = torch.nn.functional.interpolate(
                z,
                scale_factor=[self.output_sample_rate / self.input_sample_rate],
                mode="linear",
            ).squeeze(0)
        o = self.waveform_decoder(z, g=g)
        return o

    @torch.no_grad()
    def inference(self, c, g):
        """
        Args:
            x (Tensor): feature input tensor (GPT latent).
            g (Tensor): global conditioning input tensor.

        Returns:
            Tensor: output waveform.

        Shapes:
            x: [B, C, T]
            Tensor: [B, 1, T]
        """
        return self.forward(c, g=g)

    def load_checkpoint(self, checkpoint_path, eval=False):  # pylint: disable=unused-argument, redefined-builtin
        state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))
        # remove unused keys
        state = state["model"]
        states_keys = list(state.keys())
        for key in states_keys:
            if "waveform_decoder." not in key and "speaker_encoder." not in key:
                del state[key]

        self.load_state_dict(state)
        if eval:
            self.eval()
            assert not self.training
            self.waveform_decoder.remove_weight_norm()