File size: 5,836 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import torch.nn.functional as F
from torch import nn


class GST(nn.Module):
    """Global Style Token Module for factorizing prosody in speech.

    See https://arxiv.org/pdf/1803.09017"""

    def __init__(self, num_mel, num_heads, num_style_tokens, gst_embedding_dim, embedded_speaker_dim=None):
        super().__init__()
        self.encoder = ReferenceEncoder(num_mel, gst_embedding_dim)
        self.style_token_layer = StyleTokenLayer(num_heads, num_style_tokens, gst_embedding_dim, embedded_speaker_dim)

    def forward(self, inputs, speaker_embedding=None):
        enc_out = self.encoder(inputs)
        # concat speaker_embedding
        if speaker_embedding is not None:
            enc_out = torch.cat([enc_out, speaker_embedding], dim=-1)
        style_embed = self.style_token_layer(enc_out)

        return style_embed


class ReferenceEncoder(nn.Module):
    """NN module creating a fixed size prosody embedding from a spectrogram.

    inputs: mel spectrograms [batch_size, num_spec_frames, num_mel]
    outputs: [batch_size, embedding_dim]
    """

    def __init__(self, num_mel, embedding_dim):
        super().__init__()
        self.num_mel = num_mel
        filters = [1] + [32, 32, 64, 64, 128, 128]
        num_layers = len(filters) - 1
        convs = [
            nn.Conv2d(
                in_channels=filters[i], out_channels=filters[i + 1], kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)
            )
            for i in range(num_layers)
        ]
        self.convs = nn.ModuleList(convs)
        self.bns = nn.ModuleList([nn.BatchNorm2d(num_features=filter_size) for filter_size in filters[1:]])

        post_conv_height = self.calculate_post_conv_height(num_mel, 3, 2, 1, num_layers)
        self.recurrence = nn.GRU(
            input_size=filters[-1] * post_conv_height, hidden_size=embedding_dim // 2, batch_first=True
        )

    def forward(self, inputs):
        batch_size = inputs.size(0)
        x = inputs.view(batch_size, 1, -1, self.num_mel)
        # x: 4D tensor [batch_size, num_channels==1, num_frames, num_mel]
        for conv, bn in zip(self.convs, self.bns):
            x = conv(x)
            x = bn(x)
            x = F.relu(x)

        x = x.transpose(1, 2)
        # x: 4D tensor [batch_size, post_conv_width,
        #               num_channels==128, post_conv_height]
        post_conv_width = x.size(1)
        x = x.contiguous().view(batch_size, post_conv_width, -1)
        # x: 3D tensor [batch_size, post_conv_width,
        #               num_channels*post_conv_height]
        self.recurrence.flatten_parameters()
        _, out = self.recurrence(x)
        # out: 3D tensor [seq_len==1, batch_size, encoding_size=128]

        return out.squeeze(0)

    @staticmethod
    def calculate_post_conv_height(height, kernel_size, stride, pad, n_convs):
        """Height of spec after n convolutions with fixed kernel/stride/pad."""
        for _ in range(n_convs):
            height = (height - kernel_size + 2 * pad) // stride + 1
        return height


class StyleTokenLayer(nn.Module):
    """NN Module attending to style tokens based on prosody encodings."""

    def __init__(self, num_heads, num_style_tokens, gst_embedding_dim, d_vector_dim=None):
        super().__init__()

        self.query_dim = gst_embedding_dim // 2

        if d_vector_dim:
            self.query_dim += d_vector_dim

        self.key_dim = gst_embedding_dim // num_heads
        self.style_tokens = nn.Parameter(torch.FloatTensor(num_style_tokens, self.key_dim))
        nn.init.normal_(self.style_tokens, mean=0, std=0.5)
        self.attention = MultiHeadAttention(
            query_dim=self.query_dim, key_dim=self.key_dim, num_units=gst_embedding_dim, num_heads=num_heads
        )

    def forward(self, inputs):
        batch_size = inputs.size(0)
        prosody_encoding = inputs.unsqueeze(1)
        # prosody_encoding: 3D tensor [batch_size, 1, encoding_size==128]
        tokens = torch.tanh(self.style_tokens).unsqueeze(0).expand(batch_size, -1, -1)
        # tokens: 3D tensor [batch_size, num tokens, token embedding size]
        style_embed = self.attention(prosody_encoding, tokens)

        return style_embed


class MultiHeadAttention(nn.Module):
    """
    input:
        query --- [N, T_q, query_dim]
        key --- [N, T_k, key_dim]
    output:
        out --- [N, T_q, num_units]
    """

    def __init__(self, query_dim, key_dim, num_units, num_heads):
        super().__init__()
        self.num_units = num_units
        self.num_heads = num_heads
        self.key_dim = key_dim

        self.W_query = nn.Linear(in_features=query_dim, out_features=num_units, bias=False)
        self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)
        self.W_value = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)

    def forward(self, query, key):
        queries = self.W_query(query)  # [N, T_q, num_units]
        keys = self.W_key(key)  # [N, T_k, num_units]
        values = self.W_value(key)

        split_size = self.num_units // self.num_heads
        queries = torch.stack(torch.split(queries, split_size, dim=2), dim=0)  # [h, N, T_q, num_units/h]
        keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0)  # [h, N, T_k, num_units/h]
        values = torch.stack(torch.split(values, split_size, dim=2), dim=0)  # [h, N, T_k, num_units/h]

        # score = softmax(QK^T / (d_k**0.5))
        scores = torch.matmul(queries, keys.transpose(2, 3))  # [h, N, T_q, T_k]
        scores = scores / (self.key_dim**0.5)
        scores = F.softmax(scores, dim=3)

        # out = score * V
        out = torch.matmul(scores, values)  # [h, N, T_q, num_units/h]
        out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze(0)  # [N, T_q, num_units]

        return out