File size: 23,635 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
from io import BytesIO
from typing import Dict, Tuple
import librosa
import numpy as np
import scipy.io.wavfile
import scipy.signal
from TTS.tts.utils.helpers import StandardScaler
from TTS.utils.audio.numpy_transforms import (
amp_to_db,
build_mel_basis,
compute_f0,
db_to_amp,
deemphasis,
find_endpoint,
griffin_lim,
load_wav,
mel_to_spec,
millisec_to_length,
preemphasis,
rms_volume_norm,
spec_to_mel,
stft,
trim_silence,
volume_norm,
)
# pylint: disable=too-many-public-methods
class AudioProcessor(object):
"""Audio Processor for TTS.
Note:
All the class arguments are set to default values to enable a flexible initialization
of the class with the model config. They are not meaningful for all the arguments.
Args:
sample_rate (int, optional):
target audio sampling rate. Defaults to None.
resample (bool, optional):
enable/disable resampling of the audio clips when the target sampling rate does not match the original sampling rate. Defaults to False.
num_mels (int, optional):
number of melspectrogram dimensions. Defaults to None.
log_func (int, optional):
log exponent used for converting spectrogram aplitude to DB.
min_level_db (int, optional):
minimum db threshold for the computed melspectrograms. Defaults to None.
frame_shift_ms (int, optional):
milliseconds of frames between STFT columns. Defaults to None.
frame_length_ms (int, optional):
milliseconds of STFT window length. Defaults to None.
hop_length (int, optional):
number of frames between STFT columns. Used if ```frame_shift_ms``` is None. Defaults to None.
win_length (int, optional):
STFT window length. Used if ```frame_length_ms``` is None. Defaults to None.
ref_level_db (int, optional):
reference DB level to avoid background noise. In general <20DB corresponds to the air noise. Defaults to None.
fft_size (int, optional):
FFT window size for STFT. Defaults to 1024.
power (int, optional):
Exponent value applied to the spectrogram before GriffinLim. Defaults to None.
preemphasis (float, optional):
Preemphasis coefficient. Preemphasis is disabled if == 0.0. Defaults to 0.0.
signal_norm (bool, optional):
enable/disable signal normalization. Defaults to None.
symmetric_norm (bool, optional):
enable/disable symmetric normalization. If set True normalization is performed in the range [-k, k] else [0, k], Defaults to None.
max_norm (float, optional):
```k``` defining the normalization range. Defaults to None.
mel_fmin (int, optional):
minimum filter frequency for computing melspectrograms. Defaults to None.
mel_fmax (int, optional):
maximum filter frequency for computing melspectrograms. Defaults to None.
pitch_fmin (int, optional):
minimum filter frequency for computing pitch. Defaults to None.
pitch_fmax (int, optional):
maximum filter frequency for computing pitch. Defaults to None.
spec_gain (int, optional):
gain applied when converting amplitude to DB. Defaults to 20.
stft_pad_mode (str, optional):
Padding mode for STFT. Defaults to 'reflect'.
clip_norm (bool, optional):
enable/disable clipping the our of range values in the normalized audio signal. Defaults to True.
griffin_lim_iters (int, optional):
Number of GriffinLim iterations. Defaults to None.
do_trim_silence (bool, optional):
enable/disable silence trimming when loading the audio signal. Defaults to False.
trim_db (int, optional):
DB threshold used for silence trimming. Defaults to 60.
do_sound_norm (bool, optional):
enable/disable signal normalization. Defaults to False.
do_amp_to_db_linear (bool, optional):
enable/disable amplitude to dB conversion of linear spectrograms. Defaults to True.
do_amp_to_db_mel (bool, optional):
enable/disable amplitude to dB conversion of mel spectrograms. Defaults to True.
do_rms_norm (bool, optional):
enable/disable RMS volume normalization when loading an audio file. Defaults to False.
db_level (int, optional):
dB level used for rms normalization. The range is -99 to 0. Defaults to None.
stats_path (str, optional):
Path to the computed stats file. Defaults to None.
verbose (bool, optional):
enable/disable logging. Defaults to True.
"""
def __init__(
self,
sample_rate=None,
resample=False,
num_mels=None,
log_func="np.log10",
min_level_db=None,
frame_shift_ms=None,
frame_length_ms=None,
hop_length=None,
win_length=None,
ref_level_db=None,
fft_size=1024,
power=None,
preemphasis=0.0,
signal_norm=None,
symmetric_norm=None,
max_norm=None,
mel_fmin=None,
mel_fmax=None,
pitch_fmax=None,
pitch_fmin=None,
spec_gain=20,
stft_pad_mode="reflect",
clip_norm=True,
griffin_lim_iters=None,
do_trim_silence=False,
trim_db=60,
do_sound_norm=False,
do_amp_to_db_linear=True,
do_amp_to_db_mel=True,
do_rms_norm=False,
db_level=None,
stats_path=None,
verbose=True,
**_,
):
# setup class attributed
self.sample_rate = sample_rate
self.resample = resample
self.num_mels = num_mels
self.log_func = log_func
self.min_level_db = min_level_db or 0
self.frame_shift_ms = frame_shift_ms
self.frame_length_ms = frame_length_ms
self.ref_level_db = ref_level_db
self.fft_size = fft_size
self.power = power
self.preemphasis = preemphasis
self.griffin_lim_iters = griffin_lim_iters
self.signal_norm = signal_norm
self.symmetric_norm = symmetric_norm
self.mel_fmin = mel_fmin or 0
self.mel_fmax = mel_fmax
self.pitch_fmin = pitch_fmin
self.pitch_fmax = pitch_fmax
self.spec_gain = float(spec_gain)
self.stft_pad_mode = stft_pad_mode
self.max_norm = 1.0 if max_norm is None else float(max_norm)
self.clip_norm = clip_norm
self.do_trim_silence = do_trim_silence
self.trim_db = trim_db
self.do_sound_norm = do_sound_norm
self.do_amp_to_db_linear = do_amp_to_db_linear
self.do_amp_to_db_mel = do_amp_to_db_mel
self.do_rms_norm = do_rms_norm
self.db_level = db_level
self.stats_path = stats_path
# setup exp_func for db to amp conversion
if log_func == "np.log":
self.base = np.e
elif log_func == "np.log10":
self.base = 10
else:
raise ValueError(" [!] unknown `log_func` value.")
# setup stft parameters
if hop_length is None:
# compute stft parameters from given time values
self.win_length, self.hop_length = millisec_to_length(
frame_length_ms=self.frame_length_ms, frame_shift_ms=self.frame_shift_ms, sample_rate=self.sample_rate
)
else:
# use stft parameters from config file
self.hop_length = hop_length
self.win_length = win_length
assert min_level_db != 0.0, " [!] min_level_db is 0"
assert (
self.win_length <= self.fft_size
), f" [!] win_length cannot be larger than fft_size - {self.win_length} vs {self.fft_size}"
members = vars(self)
if verbose:
print(" > Setting up Audio Processor...")
for key, value in members.items():
print(" | > {}:{}".format(key, value))
# create spectrogram utils
self.mel_basis = build_mel_basis(
sample_rate=self.sample_rate,
fft_size=self.fft_size,
num_mels=self.num_mels,
mel_fmax=self.mel_fmax,
mel_fmin=self.mel_fmin,
)
# setup scaler
if stats_path and signal_norm:
mel_mean, mel_std, linear_mean, linear_std, _ = self.load_stats(stats_path)
self.setup_scaler(mel_mean, mel_std, linear_mean, linear_std)
self.signal_norm = True
self.max_norm = None
self.clip_norm = None
self.symmetric_norm = None
@staticmethod
def init_from_config(config: "Coqpit", verbose=True):
if "audio" in config:
return AudioProcessor(verbose=verbose, **config.audio)
return AudioProcessor(verbose=verbose, **config)
### normalization ###
def normalize(self, S: np.ndarray) -> np.ndarray:
"""Normalize values into `[0, self.max_norm]` or `[-self.max_norm, self.max_norm]`
Args:
S (np.ndarray): Spectrogram to normalize.
Raises:
RuntimeError: Mean and variance is computed from incompatible parameters.
Returns:
np.ndarray: Normalized spectrogram.
"""
# pylint: disable=no-else-return
S = S.copy()
if self.signal_norm:
# mean-var scaling
if hasattr(self, "mel_scaler"):
if S.shape[0] == self.num_mels:
return self.mel_scaler.transform(S.T).T
elif S.shape[0] == self.fft_size / 2:
return self.linear_scaler.transform(S.T).T
else:
raise RuntimeError(" [!] Mean-Var stats does not match the given feature dimensions.")
# range normalization
S -= self.ref_level_db # discard certain range of DB assuming it is air noise
S_norm = (S - self.min_level_db) / (-self.min_level_db)
if self.symmetric_norm:
S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm
if self.clip_norm:
S_norm = np.clip(
S_norm, -self.max_norm, self.max_norm # pylint: disable=invalid-unary-operand-type
)
return S_norm
else:
S_norm = self.max_norm * S_norm
if self.clip_norm:
S_norm = np.clip(S_norm, 0, self.max_norm)
return S_norm
else:
return S
def denormalize(self, S: np.ndarray) -> np.ndarray:
"""Denormalize spectrogram values.
Args:
S (np.ndarray): Spectrogram to denormalize.
Raises:
RuntimeError: Mean and variance are incompatible.
Returns:
np.ndarray: Denormalized spectrogram.
"""
# pylint: disable=no-else-return
S_denorm = S.copy()
if self.signal_norm:
# mean-var scaling
if hasattr(self, "mel_scaler"):
if S_denorm.shape[0] == self.num_mels:
return self.mel_scaler.inverse_transform(S_denorm.T).T
elif S_denorm.shape[0] == self.fft_size / 2:
return self.linear_scaler.inverse_transform(S_denorm.T).T
else:
raise RuntimeError(" [!] Mean-Var stats does not match the given feature dimensions.")
if self.symmetric_norm:
if self.clip_norm:
S_denorm = np.clip(
S_denorm, -self.max_norm, self.max_norm # pylint: disable=invalid-unary-operand-type
)
S_denorm = ((S_denorm + self.max_norm) * -self.min_level_db / (2 * self.max_norm)) + self.min_level_db
return S_denorm + self.ref_level_db
else:
if self.clip_norm:
S_denorm = np.clip(S_denorm, 0, self.max_norm)
S_denorm = (S_denorm * -self.min_level_db / self.max_norm) + self.min_level_db
return S_denorm + self.ref_level_db
else:
return S_denorm
### Mean-STD scaling ###
def load_stats(self, stats_path: str) -> Tuple[np.array, np.array, np.array, np.array, Dict]:
"""Loading mean and variance statistics from a `npy` file.
Args:
stats_path (str): Path to the `npy` file containing
Returns:
Tuple[np.array, np.array, np.array, np.array, Dict]: loaded statistics and the config used to
compute them.
"""
stats = np.load(stats_path, allow_pickle=True).item() # pylint: disable=unexpected-keyword-arg
mel_mean = stats["mel_mean"]
mel_std = stats["mel_std"]
linear_mean = stats["linear_mean"]
linear_std = stats["linear_std"]
stats_config = stats["audio_config"]
# check all audio parameters used for computing stats
skip_parameters = ["griffin_lim_iters", "stats_path", "do_trim_silence", "ref_level_db", "power"]
for key in stats_config.keys():
if key in skip_parameters:
continue
if key not in ["sample_rate", "trim_db"]:
assert (
stats_config[key] == self.__dict__[key]
), f" [!] Audio param {key} does not match the value used for computing mean-var stats. {stats_config[key]} vs {self.__dict__[key]}"
return mel_mean, mel_std, linear_mean, linear_std, stats_config
# pylint: disable=attribute-defined-outside-init
def setup_scaler(
self, mel_mean: np.ndarray, mel_std: np.ndarray, linear_mean: np.ndarray, linear_std: np.ndarray
) -> None:
"""Initialize scaler objects used in mean-std normalization.
Args:
mel_mean (np.ndarray): Mean for melspectrograms.
mel_std (np.ndarray): STD for melspectrograms.
linear_mean (np.ndarray): Mean for full scale spectrograms.
linear_std (np.ndarray): STD for full scale spectrograms.
"""
self.mel_scaler = StandardScaler()
self.mel_scaler.set_stats(mel_mean, mel_std)
self.linear_scaler = StandardScaler()
self.linear_scaler.set_stats(linear_mean, linear_std)
### Preemphasis ###
def apply_preemphasis(self, x: np.ndarray) -> np.ndarray:
"""Apply pre-emphasis to the audio signal. Useful to reduce the correlation between neighbouring signal values.
Args:
x (np.ndarray): Audio signal.
Raises:
RuntimeError: Preemphasis coeff is set to 0.
Returns:
np.ndarray: Decorrelated audio signal.
"""
return preemphasis(x=x, coef=self.preemphasis)
def apply_inv_preemphasis(self, x: np.ndarray) -> np.ndarray:
"""Reverse pre-emphasis."""
return deemphasis(x=x, coef=self.preemphasis)
### SPECTROGRAMs ###
def spectrogram(self, y: np.ndarray) -> np.ndarray:
"""Compute a spectrogram from a waveform.
Args:
y (np.ndarray): Waveform.
Returns:
np.ndarray: Spectrogram.
"""
if self.preemphasis != 0:
y = self.apply_preemphasis(y)
D = stft(
y=y,
fft_size=self.fft_size,
hop_length=self.hop_length,
win_length=self.win_length,
pad_mode=self.stft_pad_mode,
)
if self.do_amp_to_db_linear:
S = amp_to_db(x=np.abs(D), gain=self.spec_gain, base=self.base)
else:
S = np.abs(D)
return self.normalize(S).astype(np.float32)
def melspectrogram(self, y: np.ndarray) -> np.ndarray:
"""Compute a melspectrogram from a waveform."""
if self.preemphasis != 0:
y = self.apply_preemphasis(y)
D = stft(
y=y,
fft_size=self.fft_size,
hop_length=self.hop_length,
win_length=self.win_length,
pad_mode=self.stft_pad_mode,
)
S = spec_to_mel(spec=np.abs(D), mel_basis=self.mel_basis)
if self.do_amp_to_db_mel:
S = amp_to_db(x=S, gain=self.spec_gain, base=self.base)
return self.normalize(S).astype(np.float32)
def inv_spectrogram(self, spectrogram: np.ndarray) -> np.ndarray:
"""Convert a spectrogram to a waveform using Griffi-Lim vocoder."""
S = self.denormalize(spectrogram)
S = db_to_amp(x=S, gain=self.spec_gain, base=self.base)
# Reconstruct phase
W = self._griffin_lim(S**self.power)
return self.apply_inv_preemphasis(W) if self.preemphasis != 0 else W
def inv_melspectrogram(self, mel_spectrogram: np.ndarray) -> np.ndarray:
"""Convert a melspectrogram to a waveform using Griffi-Lim vocoder."""
D = self.denormalize(mel_spectrogram)
S = db_to_amp(x=D, gain=self.spec_gain, base=self.base)
S = mel_to_spec(mel=S, mel_basis=self.mel_basis) # Convert back to linear
W = self._griffin_lim(S**self.power)
return self.apply_inv_preemphasis(W) if self.preemphasis != 0 else W
def out_linear_to_mel(self, linear_spec: np.ndarray) -> np.ndarray:
"""Convert a full scale linear spectrogram output of a network to a melspectrogram.
Args:
linear_spec (np.ndarray): Normalized full scale linear spectrogram.
Returns:
np.ndarray: Normalized melspectrogram.
"""
S = self.denormalize(linear_spec)
S = db_to_amp(x=S, gain=self.spec_gain, base=self.base)
S = spec_to_mel(spec=np.abs(S), mel_basis=self.mel_basis)
S = amp_to_db(x=S, gain=self.spec_gain, base=self.base)
mel = self.normalize(S)
return mel
def _griffin_lim(self, S):
return griffin_lim(
spec=S,
num_iter=self.griffin_lim_iters,
hop_length=self.hop_length,
win_length=self.win_length,
fft_size=self.fft_size,
pad_mode=self.stft_pad_mode,
)
def compute_f0(self, x: np.ndarray) -> np.ndarray:
"""Compute pitch (f0) of a waveform using the same parameters used for computing melspectrogram.
Args:
x (np.ndarray): Waveform.
Returns:
np.ndarray: Pitch.
Examples:
>>> WAV_FILE = filename = librosa.example('vibeace')
>>> from TTS.config import BaseAudioConfig
>>> from TTS.utils.audio import AudioProcessor
>>> conf = BaseAudioConfig(pitch_fmax=640, pitch_fmin=1)
>>> ap = AudioProcessor(**conf)
>>> wav = ap.load_wav(WAV_FILE, sr=ap.sample_rate)[:5 * ap.sample_rate]
>>> pitch = ap.compute_f0(wav)
"""
# align F0 length to the spectrogram length
if len(x) % self.hop_length == 0:
x = np.pad(x, (0, self.hop_length // 2), mode=self.stft_pad_mode)
f0 = compute_f0(
x=x,
pitch_fmax=self.pitch_fmax,
pitch_fmin=self.pitch_fmin,
hop_length=self.hop_length,
win_length=self.win_length,
sample_rate=self.sample_rate,
stft_pad_mode=self.stft_pad_mode,
center=True,
)
return f0
### Audio Processing ###
def find_endpoint(self, wav: np.ndarray, min_silence_sec=0.8) -> int:
"""Find the last point without silence at the end of a audio signal.
Args:
wav (np.ndarray): Audio signal.
threshold_db (int, optional): Silence threshold in decibels. Defaults to -40.
min_silence_sec (float, optional): Ignore silences that are shorter then this in secs. Defaults to 0.8.
Returns:
int: Last point without silence.
"""
return find_endpoint(
wav=wav,
trim_db=self.trim_db,
sample_rate=self.sample_rate,
min_silence_sec=min_silence_sec,
gain=self.spec_gain,
base=self.base,
)
def trim_silence(self, wav):
"""Trim silent parts with a threshold and 0.01 sec margin"""
return trim_silence(
wav=wav,
sample_rate=self.sample_rate,
trim_db=self.trim_db,
win_length=self.win_length,
hop_length=self.hop_length,
)
@staticmethod
def sound_norm(x: np.ndarray) -> np.ndarray:
"""Normalize the volume of an audio signal.
Args:
x (np.ndarray): Raw waveform.
Returns:
np.ndarray: Volume normalized waveform.
"""
return volume_norm(x=x)
def rms_volume_norm(self, x: np.ndarray, db_level: float = None) -> np.ndarray:
"""Normalize the volume based on RMS of the signal.
Args:
x (np.ndarray): Raw waveform.
Returns:
np.ndarray: RMS normalized waveform.
"""
if db_level is None:
db_level = self.db_level
return rms_volume_norm(x=x, db_level=db_level)
### save and load ###
def load_wav(self, filename: str, sr: int = None) -> np.ndarray:
"""Read a wav file using Librosa and optionally resample, silence trim, volume normalize.
Resampling slows down loading the file significantly. Therefore it is recommended to resample the file before.
Args:
filename (str): Path to the wav file.
sr (int, optional): Sampling rate for resampling. Defaults to None.
Returns:
np.ndarray: Loaded waveform.
"""
if sr is not None:
x = load_wav(filename=filename, sample_rate=sr, resample=True)
else:
x = load_wav(filename=filename, sample_rate=self.sample_rate, resample=self.resample)
if self.do_trim_silence:
try:
x = self.trim_silence(x)
except ValueError:
print(f" [!] File cannot be trimmed for silence - {filename}")
if self.do_sound_norm:
x = self.sound_norm(x)
if self.do_rms_norm:
x = self.rms_volume_norm(x, self.db_level)
return x
def save_wav(self, wav: np.ndarray, path: str, sr: int = None, pipe_out=None) -> None:
"""Save a waveform to a file using Scipy.
Args:
wav (np.ndarray): Waveform to save.
path (str): Path to a output file.
sr (int, optional): Sampling rate used for saving to the file. Defaults to None.
pipe_out (BytesIO, optional): Flag to stdout the generated TTS wav file for shell pipe.
"""
if self.do_rms_norm:
wav_norm = self.rms_volume_norm(wav, self.db_level) * 32767
else:
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
wav_norm = wav_norm.astype(np.int16)
if pipe_out:
wav_buffer = BytesIO()
scipy.io.wavfile.write(wav_buffer, sr if sr else self.sample_rate, wav_norm)
wav_buffer.seek(0)
pipe_out.buffer.write(wav_buffer.read())
scipy.io.wavfile.write(path, sr if sr else self.sample_rate, wav_norm)
def get_duration(self, filename: str) -> float:
"""Get the duration of a wav file using Librosa.
Args:
filename (str): Path to the wav file.
"""
return librosa.get_duration(filename=filename)
|