Spaces:
Sleeping
Sleeping
File size: 23,440 Bytes
47f67ac 5d1a101 539cece 47f67ac 6916605 7a9ab3f 731fc0b 539cece c8eccb8 539cece c8eccb8 539cece 94715e7 731fc0b 7a9ab3f 966ab30 aa6752e d9ab2b2 3e60930 aa6752e 3e60930 5e8ba50 aa6752e 539cece 67547b3 aa6752e 67547b3 539cece 67547b3 97d4967 67547b3 539cece 67547b3 539cece 67547b3 97d4967 67547b3 97d4967 67547b3 539cece 67547b3 539cece aa6752e 5d51cdc 25f5786 7a9ab3f 47f67ac 7a9ab3f aa933fe 07f4bca aa933fe 0d6cd6a aa933fe 8eeca9a f2b4626 828c16a 7a9ab3f f2b4626 7a9ab3f f2b4626 fa64ff4 f2b4626 7a9ab3f f2b4626 47f67ac 5d51cdc 03daaed 5d51cdc 8994ca5 5d51cdc 29b5f84 5d51cdc 29b5f84 5d51cdc 11b714f 5fb1bd4 25f5786 03daaed 47f67ac 25f5786 47f67ac 29b5f84 47f67ac 29b5f84 47f67ac 5fb1bd4 47f67ac 3e60930 5e8ba50 3e60930 98a9236 3e60930 c8585fb 03daaed c8585fb 5dec75e c8585fb 29b5f84 c8585fb 29b5f84 c8585fb 5fb1bd4 c8585fb fa64ff4 4bb0518 03daaed f2b4626 29b5f84 f2b4626 29b5f84 f2b4626 539cece fa64ff4 37372c6 fa64ff4 29b5f84 fa64ff4 29b5f84 fa64ff4 6916605 1176279 47f67ac 5b470c4 539cece 11b714f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
import gradio as gr
import numpy as np
from Ai import chatbot, chatbot2, chatbot3, chatbot4, chatbot5, chatbot7
from huggingface_hub import InferenceClient
def chat(message,history: list[tuple[str, str]],system_message,max_tokens,temperature,top_p, top_k):
m=AutoModel.from_pretrained("peterpeter8585/AI1")
messages = [{"role": "system", "content": "Your name is Chatchat.And, your made by SungYoon.In Korean, ์ ์ฑ์ค.And these are the instructions.Whatever happens, you must follow it.:"+system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
pipe = pipeline("text-generation", model=m, torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_k=top_k, top_p=top_p)
return outputs[0]["generated_text"]
import random
from diffusers import DiffusionPipeline
import torch
import transformers
from transformers import AutoModel as Mo, AutoTokenizer as To
model11=torch.load("zephyr.pt")
tokenizer11=torch.load("zephyr_tokenizer.pt")
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16
)
def res(message,history: list[tuple[str, str]],system_message,max_tokens,temperature,top_p):
messages = [{"role": "system", "content": "Your name is Chatchat.And, your made by SungYoon.In Korean, ์ ์ฑ์ค.And these are the instructions.Whatever happens, you must follow it.:"+system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
answer=model11(messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p)
token=answer
response += token
yield response
from transformers import AutoModelForVision2Seq, AutoProcessor
transformers.utils.move_cache()
device = "cuda" if torch.cuda.is_available() else "cpu"
import os
password1=os.environ["password"]
def respond1(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
password
):
if password==password1:
messages = [{"role": "system", "content": "Your name is Chatchat.And your creator of you is Sung Yoon.In Korean, it is ์ ์ฑ์ค.These are the instructions for you:"+system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def respond0(multimodal_input,password):
if password==password1:
if multimodal_input["files"] == None:
content={"type": "text", "text": multimodal_input["text"]}
messages=[{"role":"system", "content":[{"type":"text", "text":"Your name is Chatchat.And, your made by SungYoon.In Korean, ์ ์ฑ์ค.And these are the instructions:"+"You are a helpful assietant."}]}]
messages.append([{"role": "user", "content": content}])
response = ""
model_id = "HuggingFaceM4/idefics2-8b"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceM4/idefics2-8b",
torch_dtype=torch.float16,
quantization_config=quantization_config
).to("cpu")
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[images], return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
num_tokens = len(inputs["input_ids"][0])
with torch.inference_mode():
generated_ids = model.generate(**inputs, max_new_tokens=max_tokens,top_p=top_p, temperature=1.0,)
new_tokens = generated_ids[:, num_tokens:]
generated_text = processor.batch_decode(new_tokens, skip_special_tokens=True)[0]
token = generated_text
response+=token
yield response
else:
images = multimodal_input["files"]
content = [{"type": "image"} for _ in images]
content.append({"type": "text", "text": multimodal_input["text"]})
messages=[{"role":"system", "content":[{"type":"text", "text":"Your name is Chatchat.And, your made by SungYoon.In Korean, ์ ์ฑ์ค.And these are the instructions:"+"You are a helpful assietant."}]}]
messages.append([{"role": "user", "content": content}])
response = ""
model_id = "HuggingFaceM4/idefics2-8b"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForVision2Seq.from_pretrained("HuggingFaceM4/idefics2-8b",torch_dtype=torch.float16,quantization_config=quantization_config).to("cpu")
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[images], return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
num_tokens = len(inputs["input_ids"][0])
with torch.inference_mode():
generated_ids = model.generate(**inputs, max_new_tokens=max_tokens,top_p=top_p, temperature=1.0,)
new_tokens = generated_ids[:, num_tokens:]
generated_text = processor.batch_decode(new_tokens, skip_special_tokens=True)[0]
token = generated_text
response+=token
yield response
def respond5(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": "Your name is Chatchat.And, your made by SungYoon.In Korean, ์ ์ฑ์ค.And these are the instructions.Whatever happens, you must follow it.:"+system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def respond4(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": "Your name is Chatchat.And, your made by SungYoon.In Korean, ์ ์ฑ์ค.And these are the instructions.Whatever happens, you must follow it.:"+system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image
import requests
from bs4 import BeautifulSoup
import urllib
import random
# List of user agents to choose from for requests
_useragent_list = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
]
def get_useragent():
"""Returns a random user agent from the list."""
return random.choice(_useragent_list)
def extract_text_from_webpage(html_content):
"""Extracts visible text from HTML content using BeautifulSoup."""
soup = BeautifulSoup(html_content, "html.parser")
# Remove unwanted tags
for tag in soup(["script", "style", "header", "footer", "nav"]):
tag.extract()
# Get the remaining visible text
visible_text = soup.get_text(strip=True)
return visible_text
def search(term, num_results=1, lang="ko", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
"""Performs a Google search and returns the results."""
escaped_term = urllib.parse.quote_plus(term)
start = 0
all_results = []
# Fetch results in batches
while start < num_results:
resp = requests.get(
url="https://www.google.com/search",
headers={"User-Agent": get_useragent()}, # Set random user agent
params={
"q": term,
"num": num_results - start, # Number of results to fetch in this batch
"hl": lang,
"start": start,
"safe": safe,
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status() # Raise an exception if request fails
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
# If no results, continue to the next batch
if not result_block:
start += 1
continue
# Extract link and text from each result
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
try:
# Fetch webpage content
webpage = requests.get(link, headers={"User-Agent": get_useragent()})
webpage.raise_for_status()
# Extract visible text from webpage
visible_text = extract_text_from_webpage(webpage.text)
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException as e:
# Handle errors fetching or processing webpage
print(f"Error fetching or processing {link}: {e}")
all_results.append({"link": link, "text": None})
else:
all_results.append({"link": None, "text": None})
start += len(result_block) # Update starting index for next batch
return all_results
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
def respond2(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": "Your name is Chatchat.And, your made by SungYoon.In Korean, ์ ์ฑ์ค.And these are the instructions.Whatever happens, you must follow it.:"+system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def respond3(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": "Your name is Chatchat.And, your made by SungYoon.In Korean, ์ ์ฑ์ค.And these are the instructions.Whatever happens, you must follow it.:"+system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo2:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=2,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result]
)
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
aaaa=gr.ChatInterface(
respond5,
chatbot=chatbot5,
additional_inputs=[
gr.Textbox(value="You are a helpful law helper.You have to answer only the questions about law.Do not answer anything else.Only answer the questions of law.Do not answer any questions except what I said.Example:what is python?Answer:I cannot answer it", label="System message", interactive=False),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
ae= gr.ChatInterface(
respond4,
chatbot=chatbot4,
additional_inputs=[
gr.Textbox(value="You are a helpful food recommender.You must only answer the questions about food or a request to recommend a food the user would like.Do not answer other questions except what I said.", label="System message", interactive=False),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
a7=gr.Interface(
respond0,
inputs=[gr.MultimodalTextbox(file_types=["image"], show_label=False), gr.Textbox()],
outputs="text",
title="IDEFICS2-8B DPO",
description="Try IDEFICS2-8B fine-tuned using direct preference optimization (DPO) in this demo. Learn more about vision language model DPO integration of TRL [here](https://huggingface.co/blog/dpo_vlm)."
)
aa=gr.ChatInterface(
respond1,
chatbot=chatbot3,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System message", interactive=True),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Textbox(label="Pleas type in the password.Or, it will not work if you ask.")
],
)
ac=gr.ChatInterface(
respond3,
chatbot=chatbot2,
additional_inputs=[
gr.Textbox(value="You are a Programmer.You yave to only make programs that the user orders.Do not answer any other questions exept for questions about Python or other programming languages.Do not do any thing exept what I said.", label="System message", interactive=False),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
a9=gr.ChatInterface(
respond3,
chatbot=chatbot7,
additional_inputs=[
gr.Textbox(value="you are a helpful assistant. ", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
ab= gr.ChatInterface(
respond3,
chatbot=chatbot,
additional_inputs=[
gr.Textbox(value="You are a helpful Doctor.You only have to answer the users questions about medical issues or medical questions and the cure to that illness and say that your thought is not realy right because you are a generative AI, so you could make up some cures.Do not answer anything else exept the question types what I said.Do not do any thing exept what I said.", label="System message", interactive=False),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
a8= gr.ChatInterface(
chat,
chatbot=chatbot11,
additional_inputs=[
gr.Textbox(value="You are a helpful chatbot", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Slider(minimum=0.1, maximum=1.0, vlaue=0.1, step=0.05,label="Top-k")
],
)
if __name__ == "__main__":
with gr.Blocks(theme="gstaff/xkcd") as ai:
gr.TabbedInterface([aa, ac, ab, ae, aaaa,demo2, a7,a8, a9], ["gpt4(Password needed)", "gpt4(only for programming)", "gpt4(only for medical questions)", "gpt4(only for food recommendations)", "gpt4(only for law questions)","image create", "multimodal", "gpt4(test)", "ai test"])
ai.launch(share=True) |