Spaces:
Runtime error
Runtime error
import streamlit as st | |
from huggingface_hub import InferenceClient | |
import fitz # PyMuPDF | |
import os | |
import tempfile | |
st.title("ChatGPT-like Chatbot") | |
base_url = "https://api-inference.huggingface.co/models/" | |
API_KEY = os.environ.get('HUGGINGFACE_API_KEY') | |
headers = {"Authorization": "Bearer " + str(API_KEY)} | |
model_links = { | |
"Mistral-7B": base_url + "mistralai/Mistral-7B-Instruct-v0.2" | |
} | |
model_info = { | |
"Mistral-7B": { | |
#'description': "Good Model", | |
#'logo': 'model.jpg' | |
} | |
} | |
def format_prompt(context, question, custom_instructions=None): | |
prompt = "" | |
if custom_instructions: | |
prompt += f"[INST] {custom_instructions} [/INST]" | |
prompt += f"{context}\n\n[INST] {question} [/INST]" | |
return prompt | |
def reset_conversation(): | |
st.session_state.conversation = [] | |
st.session_state.messages = [] | |
return None | |
def read_pdf(file): | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file: | |
tmp_file.write(file.read()) | |
tmp_file_path = tmp_file.name | |
pdf_document = fitz.open(tmp_file_path) | |
text = "" | |
for page_num in range(len(pdf_document)): | |
page = pdf_document[page_num] | |
text += page.get_text() | |
os.remove(tmp_file_path) | |
return text | |
models = [key for key in model_links.keys()] | |
# Create the sidebar with the dropdown for model selection | |
selected_model = st.sidebar.selectbox("Select Model", models) | |
# Create a temperature slider | |
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5)) | |
# Add reset button to clear conversation | |
st.sidebar.button('Reset Chat', on_click=reset_conversation) # Reset button | |
# Create model description | |
st.sidebar.write(f"You're now chatting with {selected_model}") | |
#st.sidebar.markdown(model_info[selected_model]['description']) | |
#st.sidebar.image(model_info[selected_model]['logo']) | |
st.sidebar.markdown("Generated content may be inaccurate or false.") | |
st.sidebar.markdown("\nLearn how to build this chatbot here.") | |
if "prev_option" not in st.session_state: | |
st.session_state.prev_option = selected_model | |
if st.session_state.prev_option != selected_model: | |
st.session_state.messages = [] | |
st.session_state.prev_option = selected_model | |
reset_conversation() | |
# Pull in the model we want to use | |
repo_id = model_links[selected_model] | |
st.subheader(f'AI - {selected_model}') | |
st.title(f'ChatBot Using {selected_model}') | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Upload PDF | |
with st.sidebar: | |
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf") | |
if uploaded_file is not None: | |
pdf_text = read_pdf(uploaded_file) | |
st.session_state.pdf_text = pdf_text | |
st.write("PDF content loaded successfully!") | |
# Accept user input | |
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"): | |
custom_instruction = "Act like a Human in conversation" | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
context = st.session_state.pdf_text if "pdf_text" in st.session_state else "" | |
formated_text = format_prompt(context, prompt, custom_instruction) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
client = InferenceClient( | |
model=model_links[selected_model], | |
headers=headers) | |
output = client.text_generation( | |
formated_text, | |
temperature=temp_values, # 0.5 | |
max_new_tokens=3000, | |
stream=True | |
) | |
response = st.write_stream(output) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |