healthy / pages /Phase1.py
peterciank's picture
Update pages/Phase1.py
0ea61fa verified
import streamlit as st
from huggingface_hub import InferenceClient
import fitz # PyMuPDF
import os
import tempfile
st.title("ChatGPT-like Chatbot")
base_url = "https://api-inference.huggingface.co/models/"
API_KEY = os.environ.get('HUGGINGFACE_API_KEY')
headers = {"Authorization": "Bearer " + str(API_KEY)}
model_links = {
"Mistral-7B": base_url + "mistralai/Mistral-7B-Instruct-v0.2"
}
model_info = {
"Mistral-7B": {
#'description': "Good Model",
#'logo': 'model.jpg'
}
}
def format_prompt(context, question, custom_instructions=None):
prompt = ""
if custom_instructions:
prompt += f"[INST] {custom_instructions} [/INST]"
prompt += f"{context}\n\n[INST] {question} [/INST]"
return prompt
def reset_conversation():
st.session_state.conversation = []
st.session_state.messages = []
return None
def read_pdf(file):
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
tmp_file.write(file.read())
tmp_file_path = tmp_file.name
pdf_document = fitz.open(tmp_file_path)
text = ""
for page_num in range(len(pdf_document)):
page = pdf_document[page_num]
text += page.get_text()
os.remove(tmp_file_path)
return text
models = [key for key in model_links.keys()]
# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)
# Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
# Add reset button to clear conversation
st.sidebar.button('Reset Chat', on_click=reset_conversation) # Reset button
# Create model description
st.sidebar.write(f"You're now chatting with {selected_model}")
#st.sidebar.markdown(model_info[selected_model]['description'])
#st.sidebar.image(model_info[selected_model]['logo'])
st.sidebar.markdown("Generated content may be inaccurate or false.")
st.sidebar.markdown("\nLearn how to build this chatbot here.")
if "prev_option" not in st.session_state:
st.session_state.prev_option = selected_model
if st.session_state.prev_option != selected_model:
st.session_state.messages = []
st.session_state.prev_option = selected_model
reset_conversation()
# Pull in the model we want to use
repo_id = model_links[selected_model]
st.subheader(f'AI - {selected_model}')
st.title(f'ChatBot Using {selected_model}')
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Upload PDF
with st.sidebar:
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
if uploaded_file is not None:
pdf_text = read_pdf(uploaded_file)
st.session_state.pdf_text = pdf_text
st.write("PDF content loaded successfully!")
# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
custom_instruction = "Act like a Human in conversation"
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
context = st.session_state.pdf_text if "pdf_text" in st.session_state else ""
formated_text = format_prompt(context, prompt, custom_instruction)
# Display assistant response in chat message container
with st.chat_message("assistant"):
client = InferenceClient(
model=model_links[selected_model],
headers=headers)
output = client.text_generation(
formated_text,
temperature=temp_values, # 0.5
max_new_tokens=3000,
stream=True
)
response = st.write_stream(output)
st.session_state.messages.append({"role": "assistant", "content": response})