Spaces:
Runtime error
Runtime error
File size: 5,504 Bytes
d55cd8e 754c404 e1c9862 754c404 46a4b10 d55cd8e 99fcde7 d55cd8e e7eb220 d55cd8e 754c404 99fcde7 e7eb220 15c3c81 754c404 d55cd8e e1c9862 754c404 d55cd8e 754c404 d55cd8e 754c404 e1c9862 99fcde7 754c404 d55cd8e 754c404 d55cd8e b601e7d 424cf41 e7eb220 99fcde7 424cf41 966c960 d55cd8e 9dd2087 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# import the relevant packages
import os
import csv
import requests
import time
import base64
import pandas as pd
import numpy as np
import openai
from openai import OpenAI
import gradio as gr
import huggingface_hub
from datasets import load_dataset
api_key = os.environ.get("API_TOKEN")
headers = {
'Authorization': 'Bearer ' + api_key,
'Content-Type': 'application/json'
}
dataset = load_dataset('csv', data_files='https://huggingface.co/datasets/petcoblue/simulation_data/resolve/main/user_agents.csv')
user_agents = dataset['train'].to_pandas()
user_agents = user_agents.iloc[:,1:]
user_batch = user_agents[:10]
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def create_description(row):
description = (
f"Imagine that you are currently {int(row['age'])} years old. You have {int(row['num_pets'])} pets "
f"and spend an average of ${row['avg_spending']} on Petco purchases. "
f"Your engagement with Petco marketing has a score of {int(row['engagement_score'])}. "
f"You have an income level of {int(row['income_level'])} and "
f"regularly buy items from Petco every {int(row['purchase_regularity'])} months. "
f"It has been {int(row['time_since_last_purchase'])} days since your last purchase with Petco."
)
return description
question = (
"Here are two images of Petco marketing emails:\n"
"- Image 0 is shown first.\n"
"- Image 1 is shown second.\n"
"Which email are you more likely to click through? Just answer with 0 for the first image or 1 for the second image.\n"
"Then, provide a list of up to five one-word characteristics of the email you chose that made you want to click through it. Separate each characteristic with a comma.\n\n"
"Example response:\n"
"1; Characteristics: Appealing, Sale, Bright, Simple, Exclusive\n"
)
def query_agent(description, question, image0, image1):
base64_image0 = encode_image(image0)
base64_image1 = encode_image(image1)
payload = {
"model": "gpt-4-vision-preview",
"messages": [
{"role": "system", "content": description},
{
"role": "user",
"content": [
{"type": "text", "text": question},
{"type": "image", "image_url": f"data:image/jpeg;base64,{base64_image0}"},
{"type": "image", "image_url": f"data:image/jpeg;base64,{base64_image1}"}
]
}
],
"max_tokens": 300,
"logprobs": True,
"top_logprobs": 1
}
for attempt in range(3):
try:
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
if response.status_code == 200:
data = response.json()
preference = data['choices'][0]['message']['content']
top_logprobs = data['choices'][0]['logprobs']['content'][0]['top_logprobs']
return preference, top_logprobs
else:
print(f"HTTP Error {response.status_code} on attempt {attempt + 1}")
except requests.exceptions.RequestException as e:
print(f"Request failed on attempt {attempt + 1}: {e}")
time.sleep(1)
else:
print(f"Failed to analyze {image0} and {image1} after 3 attempts.")
return None, None
def simulate(image0, image1):
upload_file(image0)
upload_file(image1)
preferences = []
reasons = []
probs = []
for index, user_agent in user_batch.iterrows():
description = create_description(user_agent)
preference, top_logprobs = query_agent(description, question, image0, image1)
prob = np.round(np.exp(top_logprobs[0]['logprob']) * 100, 2)
split = preference.split("; Characteristics: ")
if len(split) == 2:
choice, reasoning = split[0], split[1]
else:
print(preference)
choice, reasoning = split[0], ""
preferences.append(0 if "0" in choice else 1)
reasons.append(reasoning)
probs.append(prob)
avg_preference = sum(preferences) / len(preferences)
avg_prob = sum(probs) / len(preferences)
return avg_preference
subtitle = "Upload two images of emails and see which is generally preferred by Petco customers!"
from pathlib import Path
def upload_file(filepath):
name = Path(filepath).name
return [gr.UploadButton(visible=False), gr.DownloadButton(label=f"{name}", value=filepath, visible=True)]
# with gr.Blocks() as demo:
# gr.Markdown("First upload a file and and then you'll be able download it (but only once!)")
# with gr.Row():
# u = gr.UploadButton("Upload a file", file_count="single")
# d = gr.DownloadButton("Download the file", visible=False)
# u.upload(upload_file, u, [u, d])
# d.click(download_file, None, [u, d])
demo = gr.Interface(fn=simulate,
inputs=[gr.UploadButton("Click to Upload Email 0", file_types=["image"], file_count="single"),
gr.UploadButton("Click to Upload Email 1", file_types=["image"], file_count="single")],
outputs="text",
title="Pairwise Simulation of Petco Email Preference",
description=subtitle
)
if __name__ == "__main__":
demo.launch() |