Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import sys | |
import os | |
import datetime | |
import gradio as gr | |
import spaces | |
def run_on_gpu(input_point_cloud: gr.utils.NamedString, | |
gen_resolution_global: int, | |
padding_factor: float, | |
gen_subsample_manifold_iter: int, | |
gen_refine_iter: int) -> str: | |
print('Started inference at {}'.format(datetime.datetime.now())) | |
print('Inputs:', input_point_cloud, gen_resolution_global, padding_factor, | |
gen_subsample_manifold_iter, gen_refine_iter) | |
print('Types:', type(input_point_cloud), type(gen_resolution_global), type(padding_factor), | |
type(gen_subsample_manifold_iter), type(gen_refine_iter)) | |
sys.path.append(os.path.abspath('ppsurf')) | |
import subprocess | |
import uuid | |
in_file = '{}'.format(input_point_cloud.name) | |
rand_hash = uuid.uuid4().hex | |
out_dir = '/tmp/outputs/{}'.format(rand_hash) | |
out_file_basename = os.path.basename(in_file) + '.obj' | |
out_file = os.path.join(out_dir, os.path.basename(in_file), out_file_basename) | |
os.makedirs(out_dir, exist_ok=True) | |
model_path = 'models/ppsurf_50nn/version_0/checkpoints/last.ckpt' | |
args = [ | |
'pps.py', 'predict', | |
'-c', 'ppsurf/configs/poco.yaml', | |
'-c', 'ppsurf/configs/ppsurf.yaml', | |
'-c', 'ppsurf/configs/ppsurf_50nn.yaml', | |
'--ckpt_path', model_path, | |
'--data.init_args.in_file', in_file, | |
'--model.init_args.results_dir', out_dir, | |
'--trainer.logger', 'False', | |
'--trainer.devices', '1', | |
'--model.init_args.gen_resolution_global', str(gen_resolution_global), | |
'--data.init_args.padding_factor', str(padding_factor), | |
'--model.init_args.gen_subsample_manifold_iter', str(gen_subsample_manifold_iter), | |
'--model.init_args.gen_refine_iter', str(gen_refine_iter), | |
] | |
sys.argv = args | |
try: | |
subprocess.run(['python', 'ppsurf/pps.py'] + args[1:]) # need subprocess to spawn workers | |
except Exception as e: | |
gr.Warning("Reconstruction failed:\n{}".format(e)) | |
print('Finished inference at {}'.format(datetime.datetime.now())) | |
result_3d_model = out_file | |
return result_3d_model | |
def main(): | |
description_header = '# PPSurf: Combining Patches and Point Convolutions for Detailed Surface Reconstruction' | |
description_col0 = '''## [Github](https://github.com/cg-tuwien/ppsurf) | |
Supported input file formats: | |
- PLY, STL, OBJ and other mesh files, | |
- XYZ as whitespace-separated text file, | |
- NPY and NPZ (key='arr_0'), | |
- LAS and LAZ (version 1.0-1.4), COPC and CRS. | |
Best results for 50k-250k points. | |
''' | |
description_col1 = '''## [Project Info](https://www.cg.tuwien.ac.at/research/publications/2024/erler_2024_ppsurf/) | |
This method is meant for scans of single and few objects. | |
Quality for scenes and landscapes will be lower. | |
Inference takes up to 180 seconds. | |
''' | |
# can't render many input types directly in Gradio Model3D | |
# so we need to convert to supported format | |
# Gradio can't draw point clouds anyway (2024-03-04), so we skip this for now | |
# def convert_to_ply(input_point_cloud_upload: gr.utils.NamedString): | |
# | |
# # add absolute path to import dirs | |
# import sys | |
# import os | |
# sys.path.append(os.path.abspath('ppsurf')) | |
# | |
# # import os | |
# # os.chdir('ppsurf') | |
# | |
# print('Inputs:', input_point_cloud_upload, type(input_point_cloud_upload)) | |
# input_shape: str = input_point_cloud_upload.name | |
# if not input_shape.endswith('.ply'): | |
# # load file | |
# from ppsurf.source.occupancy_data_module import OccupancyDataModule | |
# pts_np = OccupancyDataModule.load_pts(input_shape) | |
# | |
# # convert to ply | |
# import trimesh | |
# mesh = trimesh.Trimesh(vertices=pts_np[:, :3]) | |
# input_shape = input_shape + '.ply' | |
# mesh.export(input_shape) | |
# | |
# print('ls:\n', subprocess.run(['ls', os.path.dirname(input_shape)])) | |
# | |
# # show in viewer | |
# print(type(input_tabs)) | |
# # print(type(input_point_cloud_viewer)) | |
# # input_tabs.selected = 'pc_viewer' | |
# # input_point_cloud_viewer.value = input_shape | |
if (SPACE_ID := os.getenv('SPACE_ID')) is not None: | |
description_col1 += (f'\n<p>For faster inference without waiting in queue, ' | |
f'you may duplicate the space and upgrade to GPU in settings. ' | |
f'<a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true">' | |
f'<img style="display: inline; margin-top: 0em; margin-bottom: 0em" ' | |
f'src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>') | |
with gr.Blocks(css='style.css') as demo: | |
# descriptions | |
gr.Markdown(description_header) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(description_col0) | |
with gr.Column(): | |
gr.Markdown(description_col1) | |
# inputs and outputs | |
with gr.Row(): | |
with gr.Column(): | |
input_point_cloud_upload = gr.File(show_label=False, file_count='single') | |
# with gr.Tabs() as input_tabs: # re-enable when Gradio supports point clouds | |
# with gr.TabItem(label='Input Point Cloud Upload', id='pc_upload'): | |
# input_point_cloud_upload.upload( | |
# fn=convert_to_ply, | |
# inputs=[ | |
# input_point_cloud_upload, | |
# ], | |
# outputs=[ | |
# # input_point_cloud_viewer, # not available here | |
# ]) | |
# with gr.TabItem(label='Input Point Cloud Viewer', id='pc_viewer'): | |
# input_point_cloud_viewer = gr.Model3D(show_label=False) | |
gen_resolution_global = gr.Slider( | |
label='Grid Resolution (larger for more details)', | |
minimum=17, maximum=513, value=129, step=2) | |
padding_factor = gr.Slider( | |
label='Padding Factor (larger if object is cut off at boundaries)', | |
minimum=0, maximum=1.0, value=0.05, step=0.05) | |
gen_subsample_manifold_iter = gr.Slider( | |
label='Subsample Manifold Iterations (larger for larger point clouds)', | |
minimum=3, maximum=30, value=10, step=1) | |
gen_refine_iter = gr.Slider( | |
label='Edge Refinement Iterations (larger for more details)', | |
minimum=3, maximum=30, value=10, step=1) | |
with gr.Column(): | |
result_3d_model = gr.Model3D(label='Reconstructed 3D model') | |
# progress_text = gr.Text(label='Progress') | |
# with gr.Tabs(): | |
# with gr.TabItem(label='Reconstructed 3D model'): | |
# result_3d_model = gr.Model3D(show_label=False) | |
# with gr.TabItem(label='Output mesh file'): | |
# output_file = gr.File(show_label=False) | |
with gr.Row(): | |
run_button = gr.Button('Reconstruct with PPSurf') | |
run_button.click(fn=run_on_gpu, | |
inputs=[ | |
input_point_cloud_upload, | |
gen_resolution_global, | |
padding_factor, | |
gen_subsample_manifold_iter, | |
gen_refine_iter, | |
], | |
outputs=[ | |
result_3d_model, | |
# output_file, | |
# progress_text, | |
]) | |
demo.queue(max_size=5) | |
demo.launch(debug=True) | |
if __name__ == '__main__': | |
print(os.environ) | |
main() | |