File size: 3,054 Bytes
4bc9faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# pytorch_lightning==2.0.9
seed_everything: 42
trainer:
  accelerator: gpu
  strategy: ddp
  devices: -1
  num_nodes: 1
  precision: 16-mixed
  logger:
    class_path: pytorch_lightning.loggers.TensorBoardLogger
    init_args:
      save_dir: models
      version: null
      log_graph: false
      default_hp_metric: true
      prefix: ''
      sub_dir: null
  callbacks:
  - class_path: source.cli.PPSProgressBar
    init_args:
      refresh_rate: 1
      process_position: 0
  - class_path: pytorch_lightning.callbacks.LearningRateMonitor
    init_args:
      logging_interval: step
      log_momentum: false
  - class_path: pytorch_lightning.callbacks.ModelCheckpoint
    init_args:
      dirpath: null
      filename: null
      monitor: null
      verbose: false
      save_last: true
      save_top_k: 0
      save_weights_only: false
      mode: min
      auto_insert_metric_name: true
      every_n_train_steps: null
      train_time_interval: null
      every_n_epochs: null
      save_on_train_epoch_end: null
  fast_dev_run: false
  max_epochs: 150
  min_epochs: null
  max_steps: -1
  min_steps: null
  max_time: null
  limit_train_batches: null
  limit_val_batches: null
  limit_test_batches: null
  limit_predict_batches: null
  overfit_batches: 0.0
  val_check_interval: null
  check_val_every_n_epoch: 1
  num_sanity_val_steps: 0
  log_every_n_steps: 1
  enable_checkpointing: null
  enable_progress_bar: null
  enable_model_summary: null
  accumulate_grad_batches: 1
  gradient_clip_val: null
  gradient_clip_algorithm: null
  deterministic: null
  benchmark: null
  inference_mode: true
  use_distributed_sampler: true
  profiler: null
  detect_anomaly: false
  barebones: false
  plugins: null
  sync_batchnorm: false
  reload_dataloaders_every_n_epochs: 0
  default_root_dir: models/ppsurf_50nn
debug: false
ckpt_path: null
data:
  class_path: source.ppsurf_data_loader.PPSurfDataModule
  init_args:
    in_file: datasets/abc_train/testset.txt
    workers: 48
    use_ddp: true
    padding_factor: 0.05
    seed: 42
    manifold_points: 10000
    patches_per_shape: -1
    do_data_augmentation: true
    batch_size: 12
model:
  class_path: source.ppsurf_model.PPSurfModel
  init_args:
    pointnet_latent_size: 256
    output_names:
    - imp_surf_sign
    in_channels: 3
    out_channels: 2
    k: 64
    lambda_l1: 0.0
    debug: false
    results_dir: results
    name: ppsurf_50nn
    network_latent_size: 256
    gen_subsample_manifold_iter: 10
    gen_subsample_manifold: 10000
    gen_resolution_global: 257
    num_pts_local: 50
    rec_batch_size: 50000
    gen_refine_iter: 10
    workers: 48
optimizer:
  class_path: torch.optim.AdamW
  init_args:
    lr: 0.001
    betas:
    - 0.9
    - 0.999
    eps: 1.0e-05
    weight_decay: 0.01
    amsgrad: false
    maximize: false
    foreach: null
    capturable: false
    differentiable: false
    fused: null
lr_scheduler:
  class_path: torch.optim.lr_scheduler.MultiStepLR
  init_args:
    milestones:
    - 75
    - 125
    gamma: 0.1
    last_epoch: -1
    verbose: false