Spaces:
Runtime error
Runtime error
File size: 8,303 Bytes
f77687d f9d3dcc f77687d 18eb0a8 f77687d 18eb0a8 4b7c5a5 5f42443 cd8be0a 8fee2d3 5f42443 52a0fc5 bc70951 a5bd3b5 52a0fc5 cd8be0a a140fff 50f6f81 bc70951 a140fff 5148aca c75f622 bc70951 028cb6a a5bd3b5 f9d3dcc b46e8b2 50f6f81 f77687d 4e10b60 8fee2d3 4e10b60 1b7c916 8fee2d3 4e10b60 8fee2d3 a5bd3b5 5f42443 8fee2d3 4e10b60 8fee2d3 18eb0a8 f77687d 4e10b60 8fee2d3 4e10b60 5f42443 8fee2d3 18a0a54 8fee2d3 4e10b60 8fee2d3 4e10b60 8fee2d3 4e10b60 3d5c410 f77687d 18eb0a8 8794cba 5f42443 8fee2d3 8794cba f77687d a48ee33 64d4127 4e10b60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
#!/usr/bin/env python
from __future__ import annotations
import os
import datetime
import gradio as gr
import spaces
@spaces.GPU(duration=60 * 3)
def run_on_gpu(input_point_cloud: gr.utils.NamedString,
gen_resolution_global: int,
padding_factor: float,
gen_subsample_manifold_iter: int,
gen_refine_iter: int):
print('Started inference at {}'.format(datetime.datetime.now()))
print('Inputs:', input_point_cloud, gen_resolution_global, padding_factor,
gen_subsample_manifold_iter, gen_refine_iter)
print('Types:', type(input_point_cloud), type(gen_resolution_global), type(padding_factor),
type(gen_subsample_manifold_iter), type(gen_refine_iter))
import os
import sys
sys.path.append(os.path.abspath('ppsurf'))
from ppsurf.pps import cli_main
import subprocess
in_file = '{}'.format(input_point_cloud.name)
# append 'rec' to the input file name
splitext_result = os.path.splitext(in_file)
out_file = splitext_result[0] + '_rec' + splitext_result[1]
out_dir = os.path.dirname(out_file)
model_path = 'models/ppsurf_50nn/version_0/checkpoints/last.ckpt'
args = [
'pps.py', 'predict',
'-c', 'ppsurf/configs/poco.yaml',
'-c', 'ppsurf/configs/ppsurf.yaml',
'-c', 'ppsurf/configs/ppsurf_50nn.yaml',
'--ckpt_path', model_path,
'--data.init_args.in_file', in_file,
'--model.init_args.results_dir', out_dir,
'--trainer.logger', 'False',
'--trainer.devices', '1',
'--model.init_args.gen_resolution_global', str(gen_resolution_global),
'--data.init_args.padding_factor', str(padding_factor),
'--model.init_args.gen_subsample_manifold_iter', str(gen_subsample_manifold_iter),
'--model.init_args.gen_refine_iter', str(gen_refine_iter),
]
sys.argv = args
subprocess.run(['python', 'ppsurf/pps.py'] + args[1:])
# cli_main()
print('Finished inference at {}'.format(datetime.datetime.now()))
result_3d_model = out_file
output_file = out_file
progress_text = 'done'
return result_3d_model, output_file, progress_text
def main():
description = '''# [PPSurf](https://github.com/cg-tuwien/ppsurf)
Supported file formats:
- PLY, STL, OBJ and other mesh files,
- XYZ as whitespace-separated text file,
- NPY and NPZ (key='arr_0'),
- LAS and LAZ (version 1.0-1.4), COPC and CRS.
Best results for 50k-250k points.
This method is meant for scans of single and few objects.
Quality for scenes and landscapes will be lower.
Inference takes about 2 minutes.
'''
# can't render many input types directly in Gradio Model3D
# so we need to convert to supported format
# Gradio can't draw point clouds anyway, so we skip this for now
# def convert_to_ply(input_point_cloud_upload: gr.utils.NamedString):
#
# # add absolute path to import dirs
# import sys
# import os
# sys.path.append(os.path.abspath('ppsurf'))
#
# # import os
# # os.chdir('ppsurf')
#
# print('Inputs:', input_point_cloud_upload, type(input_point_cloud_upload))
# input_shape: str = input_point_cloud_upload.name
# if not input_shape.endswith('.ply'):
# # load file
# from ppsurf.source.occupancy_data_module import OccupancyDataModule
# pts_np = OccupancyDataModule.load_pts(input_shape)
#
# # convert to ply
# import trimesh
# mesh = trimesh.Trimesh(vertices=pts_np[:, :3])
# input_shape = input_shape + '.ply'
# mesh.export(input_shape)
#
# print('ls:\n', subprocess.run(['ls', os.path.dirname(input_shape)]))
#
# # show in viewer
# print(type(input_tabs))
# # print(type(input_point_cloud_viewer))
# # input_tabs.selected = 'pc_viewer'
# # input_point_cloud_viewer.value = input_shape
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
description += (f'\n<p>For faster inference without waiting in queue, '
f'you may duplicate the space and upgrade to GPU in settings. '
f'<a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true">'
f'<img style="display: inline; margin-top: 0em; margin-bottom: 0em" '
f'src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>')
with gr.Blocks(css='style.css') as demo:
gr.Markdown(description)
with gr.Row():
with gr.Column():
# with gr.Tabs() as input_tabs:
# with gr.TabItem(label='Input Point Cloud Upload', id='pc_upload'):
input_point_cloud_upload = gr.File(show_label=False, file_count='single')
# input_point_cloud_upload.upload(
# fn=convert_to_ply,
# inputs=[
# input_point_cloud_upload,
# ],
# outputs=[
# # input_point_cloud_viewer, # not available here
# ])
# with gr.TabItem(label='Input Point Cloud Viewer', id='pc_viewer'):
# input_point_cloud_viewer = gr.Model3D(show_label=False)
gen_resolution_global = gr.Slider(
label='Grid Resolution (larger for more details)',
minimum=17, maximum=513, value=129, step=2)
padding_factor = gr.Slider(
label='Padding Factor (larger if object is cut off at boundaries)',
minimum=0, maximum=1.0, value=0.05, step=0.05)
gen_subsample_manifold_iter = gr.Slider(
label='Subsample Manifold Iterations (larger for larger point clouds)',
minimum=3, maximum=30, value=10, step=1)
gen_refine_iter = gr.Slider(
label='Edge Refinement Iterations (larger for more details)',
minimum=3, maximum=30, value=10, step=1)
with gr.Column():
progress_text = gr.Text(label='Progress')
with gr.Tabs():
with gr.TabItem(label='Reconstructed 3D model'):
result_3d_model = gr.Model3D(show_label=False)
with gr.TabItem(label='Output mesh file'):
output_file = gr.File(show_label=False)
# with gr.Row():
# examples = [
# ['shapes/dragon1.obj', 'a photo of a dragon', 0, 7.5],
# ['shapes/dragon2.obj', 'a photo of a dragon', 0, 7.5],
# ['shapes/eagle.obj', 'a photo of an eagle', 0, 7.5],
# ['shapes/napoleon.obj', 'a photo of Napoleon Bonaparte', 3, 7.5],
# ['shapes/nascar.obj', 'A next gen nascar', 2, 10],
# ]
# gr.Examples(examples=examples,
# inputs=[
# input_point_cloud_viewer,
# text,
# seed,
# guidance_scale,
# ],
# outputs=[
# result_3d_model,
# output_file,
# ],
# cache_examples=False)
with gr.Row():
run_button = gr.Button('Reconstruct with PPSurf')
run_button.click(fn=run_on_gpu,
inputs=[
input_point_cloud_upload,
gen_resolution_global,
padding_factor,
gen_subsample_manifold_iter,
gen_refine_iter,
],
outputs=[
result_3d_model,
output_file,
progress_text,
])
demo.queue(max_size=5)
demo.launch(debug=True)
if __name__ == '__main__':
main()
|