Spaces:
Runtime error
Runtime error
Upload model code for multitask model
Browse files- wav2vecasr/models.py +167 -0
wav2vecasr/models.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import re
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torchaudio
|
6 |
+
from torch.utils.data import Dataset
|
7 |
+
|
8 |
+
|
9 |
+
class DataCollator:
|
10 |
+
def __init__(self, processor, padding, device, augment):
|
11 |
+
self.processor = processor
|
12 |
+
self.padding = padding
|
13 |
+
self.device = device
|
14 |
+
self.sampling_rate = 16000
|
15 |
+
self.augment = augment
|
16 |
+
|
17 |
+
atempos = (0.8, 1.0, 1.25) # audio tempo atempo=tempo
|
18 |
+
audio_effects = (
|
19 |
+
("highpass=frequency=1500",),
|
20 |
+
(
|
21 |
+
"vibrato=f=5:d=0.4",
|
22 |
+
"volume=1.5",
|
23 |
+
),
|
24 |
+
(
|
25 |
+
"aecho=0.8:0.88:30:0.3",
|
26 |
+
"volume=1.5",
|
27 |
+
),
|
28 |
+
)
|
29 |
+
|
30 |
+
self.effectors = [None]
|
31 |
+
for atempo in atempos:
|
32 |
+
for audio_effect in audio_effects:
|
33 |
+
effect = f"atempo={atempo}," + ",".join(audio_effect)
|
34 |
+
self.effectors.append(torchaudio.io.AudioEffector(effect=effect))
|
35 |
+
|
36 |
+
def __call__(self, data):
|
37 |
+
waveforms, lm_labels, accent_labels, gender_labels = zip(*data)
|
38 |
+
accent_labels = torch.tensor(accent_labels, device=self.device)
|
39 |
+
gender_labels = torch.tensor(gender_labels, device=self.device)
|
40 |
+
|
41 |
+
input_features = [
|
42 |
+
{"input_values": self.random_augment(waveform).squeeze()}
|
43 |
+
for waveform in waveforms
|
44 |
+
]
|
45 |
+
label_features = [{"input_ids": lm_label} for lm_label in lm_labels]
|
46 |
+
|
47 |
+
padded_waveforms = self.processor.pad(
|
48 |
+
input_features,
|
49 |
+
padding=True,
|
50 |
+
return_tensors="pt",
|
51 |
+
)["input_values"]
|
52 |
+
padded_waveforms = padded_waveforms.to(self.device)
|
53 |
+
|
54 |
+
with self.processor.as_target_processor():
|
55 |
+
padded_lm_labels = self.processor.pad(
|
56 |
+
label_features,
|
57 |
+
padding=True,
|
58 |
+
return_tensors="pt",
|
59 |
+
)
|
60 |
+
|
61 |
+
# replace padding with -100 to ignore loss correctly
|
62 |
+
padded_lm_labels = padded_lm_labels["input_ids"].masked_fill(
|
63 |
+
padded_lm_labels.attention_mask.ne(1), -100
|
64 |
+
)
|
65 |
+
padded_lm_labels = padded_lm_labels.to(self.device)
|
66 |
+
|
67 |
+
return padded_waveforms, padded_lm_labels, accent_labels, gender_labels
|
68 |
+
|
69 |
+
def random_augment(self, waveform):
|
70 |
+
if not self.augment:
|
71 |
+
return waveform
|
72 |
+
|
73 |
+
waveform = torch.tensor(waveform)
|
74 |
+
waveform = torch.transpose(waveform, 0, 1)
|
75 |
+
effector = random.choice(self.effectors)
|
76 |
+
if effector is None:
|
77 |
+
return waveform
|
78 |
+
|
79 |
+
augmented_waveform = effector.apply(waveform, self.sampling_rate)
|
80 |
+
if augmented_waveform.isnan().any() | augmented_waveform.isinf().any():
|
81 |
+
return waveform
|
82 |
+
|
83 |
+
return augmented_waveform
|
84 |
+
|
85 |
+
|
86 |
+
class L2ArcticDataset(Dataset):
|
87 |
+
def __init__(self, processor, audio_paths, lm_labels, accent_labels, gender_labels):
|
88 |
+
orig_sampling_rate = 44100
|
89 |
+
new_sampling_rate = 16000
|
90 |
+
resample_transform = torchaudio.transforms.Resample(
|
91 |
+
orig_sampling_rate, new_sampling_rate
|
92 |
+
)
|
93 |
+
|
94 |
+
self.waveforms = []
|
95 |
+
self.lm_labels = []
|
96 |
+
self.accent_labels = accent_labels
|
97 |
+
self.gender_labels = gender_labels
|
98 |
+
|
99 |
+
for audio_path in audio_paths:
|
100 |
+
waveform, _ = torchaudio.load(audio_path)
|
101 |
+
waveform = resample_transform(waveform)
|
102 |
+
self.waveforms.append(
|
103 |
+
processor(waveform, sampling_rate=new_sampling_rate).input_values[0]
|
104 |
+
)
|
105 |
+
|
106 |
+
with processor.as_target_processor():
|
107 |
+
for lm_label in lm_labels:
|
108 |
+
self.lm_labels.append(processor(lm_label).input_ids)
|
109 |
+
|
110 |
+
def __getitem__(self, index):
|
111 |
+
return (
|
112 |
+
self.waveforms[index],
|
113 |
+
self.lm_labels[index],
|
114 |
+
self.accent_labels[index],
|
115 |
+
self.gender_labels[index],
|
116 |
+
)
|
117 |
+
|
118 |
+
def __len__(self):
|
119 |
+
return len(self.waveforms)
|
120 |
+
|
121 |
+
|
122 |
+
class MultiTaskWav2Vec2(nn.Module):
|
123 |
+
def __init__(
|
124 |
+
self,
|
125 |
+
wav2vec2_backbone,
|
126 |
+
backbone_hidden_size,
|
127 |
+
projection_hidden_size,
|
128 |
+
num_accent_class,
|
129 |
+
):
|
130 |
+
super().__init__()
|
131 |
+
self.wav2vec2 = wav2vec2_backbone
|
132 |
+
self.accent_projector = nn.Linear(backbone_hidden_size, projection_hidden_size)
|
133 |
+
self.accent_classifier = nn.Linear(projection_hidden_size, num_accent_class)
|
134 |
+
self.gender_projector = nn.Linear(backbone_hidden_size, projection_hidden_size)
|
135 |
+
self.gender_classifier = nn.Linear(projection_hidden_size, 2)
|
136 |
+
|
137 |
+
def forward(self, waveform, lm_labels=None):
|
138 |
+
if lm_labels is not None:
|
139 |
+
# use hugging face wav2vecc2
|
140 |
+
wav2vec2_output = self.wav2vec2(input_values=waveform, labels=lm_labels)
|
141 |
+
|
142 |
+
# get partial loss based (lm_head loss or the ctc loss)
|
143 |
+
ctc_loss = wav2vec2_output.loss
|
144 |
+
|
145 |
+
else:
|
146 |
+
# use hugging face wav2vecc2
|
147 |
+
wav2vec2_output = self.wav2vec2(input_values=waveform)
|
148 |
+
ctc_loss = None
|
149 |
+
|
150 |
+
# get features from wav2vec2
|
151 |
+
features = wav2vec2_output.hidden_states[-1]
|
152 |
+
|
153 |
+
# get output lm logits
|
154 |
+
lm_logits = wav2vec2_output.logits
|
155 |
+
|
156 |
+
# get output accent logits
|
157 |
+
accent_projected = self.accent_projector(features)
|
158 |
+
accent_projected = accent_projected.mean(dim=1)
|
159 |
+
accent_logits = self.accent_classifier(accent_projected)
|
160 |
+
|
161 |
+
# get output gender logits
|
162 |
+
gender_projected = self.gender_projector(features)
|
163 |
+
gender_projected = gender_projected.mean(dim=1)
|
164 |
+
gender_logits = self.gender_classifier(gender_projected)
|
165 |
+
|
166 |
+
return ctc_loss, lm_logits, accent_logits, gender_logits
|
167 |
+
|