Spaces:
Configuration error
Configuration error
import numpy as np | |
from lib.config import cfg | |
from skimage.measure import compare_ssim | |
import os | |
import cv2 | |
import imageio | |
class Evaluator: | |
def __init__(self): | |
self.mse = [] | |
self.psnr = [] | |
self.ssim = [] | |
def psnr_metric(self, img_pred, img_gt): | |
mse = np.mean((img_pred - img_gt)**2) | |
psnr = -10 * np.log(mse) / np.log(10) | |
return psnr | |
def ssim_metric(self, rgb_pred, rgb_gt, batch): | |
mask_at_box = batch['mask_at_box'][0].detach().cpu().numpy() | |
H, W = int(cfg.H * cfg.ratio), int(cfg.W * cfg.ratio) | |
mask_at_box = mask_at_box.reshape(H, W) | |
# convert the pixels into an image | |
img_pred = np.zeros((H, W, 3)) | |
img_pred[mask_at_box] = rgb_pred | |
img_gt = np.zeros((H, W, 3)) | |
img_gt[mask_at_box] = rgb_gt | |
# crop the object region | |
x, y, w, h = cv2.boundingRect(mask_at_box.astype(np.uint8)) | |
img_pred = img_pred[y:y + h, x:x + w] | |
img_gt = img_gt[y:y + h, x:x + w] | |
# compute the ssim | |
ssim = compare_ssim(img_pred, img_gt, multichannel=True) | |
return ssim | |
def evaluate(self, batch): | |
if cfg.human in [302, 313, 315]: | |
i = batch['i'].item() + 1 | |
else: | |
i = batch['i'].item() | |
i = i + cfg.begin_i | |
cam_ind = batch['cam_ind'].item() | |
# obtain the image path | |
result_dir = 'data/result/neural_volumes/{}_nv'.format(cfg.human) | |
frame_dir = os.path.join(result_dir, 'frame_{}'.format(i)) | |
gt_img_path = os.path.join(frame_dir, 'gt_{}.jpg'.format(cam_ind + 1)) | |
pred_img_path = os.path.join(frame_dir, | |
'pred_{}.jpg'.format(cam_ind + 1)) | |
mask_at_box = batch['mask_at_box'][0].detach().cpu().numpy() | |
H, W = int(cfg.H * cfg.ratio), int(cfg.W * cfg.ratio) | |
mask_at_box = mask_at_box.reshape(H, W) | |
# convert the pixels into an image | |
rgb_gt = batch['rgb'][0].detach().cpu().numpy() | |
img_gt = np.zeros((H, W, 3)) | |
img_gt[mask_at_box] = rgb_gt | |
# gt_img_path = gt_img_path.replace('neural_volumes', 'gt') | |
# os.system('mkdir -p {}'.format(os.path.dirname(gt_img_path))) | |
# img_gt = img_gt[..., [2, 1, 0]] * 255 | |
# cv2.imwrite(gt_img_path, img_gt) | |
img_pred = imageio.imread(pred_img_path).astype(np.float32) / 255. | |
img_pred[mask_at_box != 1] = 0 | |
rgb_pred = img_pred[mask_at_box] | |
# import matplotlib.pyplot as plt | |
# _, (ax1, ax2) = plt.subplots(1, 2) | |
# ax1.imshow(img_gt) | |
# ax2.imshow(img_pred) | |
# plt.show() | |
# return | |
mse = np.mean((rgb_pred - rgb_gt)**2) | |
self.mse.append(mse) | |
psnr = self.psnr_metric(rgb_pred, rgb_gt) | |
self.psnr.append(psnr) | |
ssim = self.ssim_metric(rgb_pred, rgb_gt, batch) | |
self.ssim.append(ssim) | |
def summarize(self): | |
result_path = os.path.join(cfg.result_dir, 'metrics.npy') | |
os.system('mkdir -p {}'.format(os.path.dirname(result_path))) | |
metrics = {'mse': self.mse, 'psnr': self.psnr, 'ssim': self.ssim} | |
np.save(result_path, self.mse) | |
print('mse: {}'.format(np.mean(self.mse))) | |
print('psnr: {}'.format(np.mean(self.psnr))) | |
print('ssim: {}'.format(np.mean(self.ssim))) | |
self.mse = [] | |
self.psnr = [] | |
self.ssim = [] | |