Spaces:
Runtime error
Runtime error
pengHTYX
commited on
Commit
·
ad7ddbe
1
Parent(s):
f11b5f9
'test'
Browse files
app.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import fire
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import time
|
10 |
+
import numpy as np
|
11 |
+
from rembg import remove
|
12 |
+
from segment_anything import sam_model_registry, SamPredictor
|
13 |
+
|
14 |
+
import os
|
15 |
+
import sys
|
16 |
+
import numpy
|
17 |
+
import torch
|
18 |
+
import rembg
|
19 |
+
import threading
|
20 |
+
import urllib.request
|
21 |
+
from PIL import Image
|
22 |
+
from typing import Dict, Optional, Tuple, List
|
23 |
+
from dataclasses import dataclass
|
24 |
+
import streamlit as st
|
25 |
+
import huggingface_hub
|
26 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
27 |
+
from mvdiffusion.models.unet_mv2d_condition import UNetMV2DConditionModel
|
28 |
+
from mvdiffusion.data.single_image_dataset import SingleImageDataset as MVDiffusionDataset
|
29 |
+
from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline
|
30 |
+
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
|
31 |
+
from einops import rearrange
|
32 |
+
import numpy as np
|
33 |
+
import subprocess
|
34 |
+
from datetime import datetime
|
35 |
+
|
36 |
+
def save_image(tensor):
|
37 |
+
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
38 |
+
# pdb.set_trace()
|
39 |
+
im = Image.fromarray(ndarr)
|
40 |
+
return ndarr
|
41 |
+
|
42 |
+
|
43 |
+
def save_image_to_disk(tensor, fp):
|
44 |
+
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
45 |
+
# pdb.set_trace()
|
46 |
+
im = Image.fromarray(ndarr)
|
47 |
+
im.save(fp)
|
48 |
+
return ndarr
|
49 |
+
|
50 |
+
|
51 |
+
def save_image_numpy(ndarr, fp):
|
52 |
+
im = Image.fromarray(ndarr)
|
53 |
+
im.save(fp)
|
54 |
+
|
55 |
+
|
56 |
+
weight_dtype = torch.float16
|
57 |
+
|
58 |
+
_TITLE = '''Era3D: High-Resolution Multiview Diffusion using Efficient Row-wise Attention'''
|
59 |
+
_DESCRIPTION = '''
|
60 |
+
<div>
|
61 |
+
Generate consistent high-resolution multi-view normals maps and color images.
|
62 |
+
<a style="display:inline-block; margin-left: .5em" href='https://github.com/pengHTYX/Era3D'></a>
|
63 |
+
</div>
|
64 |
+
<div>
|
65 |
+
The demo does not include the mesh reconstruction part, please visit <a href="https://github.com/pengHTYX/Era3D">our github repo</a> to get a textured mesh.
|
66 |
+
</div>
|
67 |
+
'''
|
68 |
+
_GPU_ID = 0
|
69 |
+
|
70 |
+
|
71 |
+
if not hasattr(Image, 'Resampling'):
|
72 |
+
Image.Resampling = Image
|
73 |
+
|
74 |
+
|
75 |
+
def sam_init():
|
76 |
+
sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_h_4b8939.pth")
|
77 |
+
model_type = "vit_h"
|
78 |
+
|
79 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}")
|
80 |
+
predictor = SamPredictor(sam)
|
81 |
+
return predictor
|
82 |
+
|
83 |
+
|
84 |
+
def sam_segment(predictor, input_image, *bbox_coords):
|
85 |
+
bbox = np.array(bbox_coords)
|
86 |
+
image = np.asarray(input_image)
|
87 |
+
|
88 |
+
start_time = time.time()
|
89 |
+
predictor.set_image(image)
|
90 |
+
|
91 |
+
masks_bbox, scores_bbox, logits_bbox = predictor.predict(box=bbox, multimask_output=True)
|
92 |
+
|
93 |
+
print(f"SAM Time: {time.time() - start_time:.3f}s")
|
94 |
+
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
|
95 |
+
out_image[:, :, :3] = image
|
96 |
+
out_image_bbox = out_image.copy()
|
97 |
+
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
|
98 |
+
torch.cuda.empty_cache()
|
99 |
+
return Image.fromarray(out_image_bbox, mode='RGBA')
|
100 |
+
|
101 |
+
|
102 |
+
def expand2square(pil_img, background_color):
|
103 |
+
width, height = pil_img.size
|
104 |
+
if width == height:
|
105 |
+
return pil_img
|
106 |
+
elif width > height:
|
107 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
108 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
109 |
+
return result
|
110 |
+
else:
|
111 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
112 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
113 |
+
return result
|
114 |
+
|
115 |
+
|
116 |
+
def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=False):
|
117 |
+
RES = 1024
|
118 |
+
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
|
119 |
+
if chk_group is not None:
|
120 |
+
segment = "Background Removal" in chk_group
|
121 |
+
rescale = "Rescale" in chk_group
|
122 |
+
if segment:
|
123 |
+
image_rem = input_image.convert('RGBA')
|
124 |
+
image_nobg = remove(image_rem, alpha_matting=True)
|
125 |
+
arr = np.asarray(image_nobg)[:, :, -1]
|
126 |
+
x_nonzero = np.nonzero(arr.sum(axis=0))
|
127 |
+
y_nonzero = np.nonzero(arr.sum(axis=1))
|
128 |
+
x_min = int(x_nonzero[0].min())
|
129 |
+
y_min = int(y_nonzero[0].min())
|
130 |
+
x_max = int(x_nonzero[0].max())
|
131 |
+
y_max = int(y_nonzero[0].max())
|
132 |
+
input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max)
|
133 |
+
# Rescale and recenter
|
134 |
+
if rescale:
|
135 |
+
image_arr = np.array(input_image)
|
136 |
+
in_w, in_h = image_arr.shape[:2]
|
137 |
+
out_res = min(RES, max(in_w, in_h))
|
138 |
+
ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY)
|
139 |
+
x, y, w, h = cv2.boundingRect(mask)
|
140 |
+
max_size = max(w, h)
|
141 |
+
ratio = 0.75
|
142 |
+
side_len = int(max_size / ratio)
|
143 |
+
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
|
144 |
+
center = side_len // 2
|
145 |
+
padded_image[center - h // 2 : center - h // 2 + h, center - w // 2 : center - w // 2 + w] = image_arr[y : y + h, x : x + w]
|
146 |
+
rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS)
|
147 |
+
|
148 |
+
rgba_arr = np.array(rgba) / 255.0
|
149 |
+
rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:])
|
150 |
+
input_image = Image.fromarray((rgb * 255).astype(np.uint8))
|
151 |
+
else:
|
152 |
+
input_image = expand2square(input_image, (127, 127, 127, 0))
|
153 |
+
return input_image, input_image.resize((768, 768), Image.Resampling.LANCZOS)
|
154 |
+
|
155 |
+
|
156 |
+
def load_era3d_pipeline(cfg):
|
157 |
+
# Load scheduler, tokenizer and models.
|
158 |
+
|
159 |
+
pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
|
160 |
+
'../MacLab-Era3D-512-6view',
|
161 |
+
torch_dtype=weight_dtype
|
162 |
+
)
|
163 |
+
|
164 |
+
# pipeline.to('cuda:0')
|
165 |
+
pipeline.unet.enable_xformers_memory_efficient_attention()
|
166 |
+
|
167 |
+
|
168 |
+
if torch.cuda.is_available():
|
169 |
+
pipeline.to('cuda:0')
|
170 |
+
# sys.main_lock = threading.Lock()
|
171 |
+
return pipeline
|
172 |
+
|
173 |
+
|
174 |
+
from mvdiffusion.data.single_image_dataset import SingleImageDataset
|
175 |
+
|
176 |
+
|
177 |
+
def prepare_data(single_image, crop_size):
|
178 |
+
dataset = SingleImageDataset(root_dir='', num_views=6, img_wh=[512, 512], bg_color='white', crop_size=crop_size, single_image=single_image)
|
179 |
+
return dataset[0]
|
180 |
+
|
181 |
+
scene = 'scene'
|
182 |
+
|
183 |
+
def run_pipeline(pipeline, cfg, single_image, guidance_scale, steps, seed, crop_size, chk_group=None):
|
184 |
+
import pdb
|
185 |
+
global scene
|
186 |
+
# pdb.set_trace()
|
187 |
+
|
188 |
+
if chk_group is not None:
|
189 |
+
write_image = "Write Results" in chk_group
|
190 |
+
|
191 |
+
batch = prepare_data(single_image, crop_size)
|
192 |
+
|
193 |
+
pipeline.set_progress_bar_config(disable=True)
|
194 |
+
seed = int(seed)
|
195 |
+
generator = torch.Generator(device=pipeline.unet.device).manual_seed(seed)
|
196 |
+
|
197 |
+
|
198 |
+
imgs_in = torch.cat([batch['imgs_in']]*2, dim=0)
|
199 |
+
num_views = imgs_in.shape[1]
|
200 |
+
imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W)
|
201 |
+
|
202 |
+
normal_prompt_embeddings, clr_prompt_embeddings = batch['normal_prompt_embeddings'], batch['color_prompt_embeddings']
|
203 |
+
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0)
|
204 |
+
prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C")
|
205 |
+
|
206 |
+
|
207 |
+
out = pipeline(
|
208 |
+
imgs_in,
|
209 |
+
None,
|
210 |
+
prompt_embeds=prompt_embeddings,
|
211 |
+
generator=generator,
|
212 |
+
guidance_scale=guidance_scale,
|
213 |
+
output_type='pt',
|
214 |
+
num_images_per_prompt=1,
|
215 |
+
return_elevation_focal=cfg.log_elevation_focal_length,
|
216 |
+
**cfg.pipe_validation_kwargs
|
217 |
+
).images
|
218 |
+
|
219 |
+
bsz = out.shape[0] // 2
|
220 |
+
normals_pred = out[:bsz]
|
221 |
+
images_pred = out[bsz:]
|
222 |
+
num_views = 6
|
223 |
+
if write_image:
|
224 |
+
VIEWS = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
|
225 |
+
cur_dir = os.path.join("./mv_res", f"cropsize-{int(crop_size)}-cfg{guidance_scale:.1f}")
|
226 |
+
|
227 |
+
scene = 'scene'+datetime.now().strftime('@%Y%m%d-%H%M%S')
|
228 |
+
scene_dir = os.path.join(cur_dir, scene)
|
229 |
+
os.makedirs(scene_dir, exist_ok=True)
|
230 |
+
|
231 |
+
for j in range(num_views):
|
232 |
+
view = VIEWS[j]
|
233 |
+
normal = normals_pred[j]
|
234 |
+
color = images_pred[j]
|
235 |
+
|
236 |
+
normal_filename = f"normals_{view}_masked.png"
|
237 |
+
color_filename = f"color_{view}_masked.png"
|
238 |
+
normal = save_image_to_disk(normal, os.path.join(scene_dir, normal_filename))
|
239 |
+
color = save_image_to_disk(color, os.path.join(scene_dir, color_filename))
|
240 |
+
|
241 |
+
|
242 |
+
normals_pred = [save_image(normals_pred[i]) for i in range(bsz)]
|
243 |
+
images_pred = [save_image(images_pred[i]) for i in range(bsz)]
|
244 |
+
|
245 |
+
out = images_pred + normals_pred
|
246 |
+
return out
|
247 |
+
|
248 |
+
|
249 |
+
def process_3d(mode, data_dir, guidance_scale, crop_size):
|
250 |
+
dir = None
|
251 |
+
global scene
|
252 |
+
|
253 |
+
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
254 |
+
|
255 |
+
subprocess.run(
|
256 |
+
f'cd instant-nsr-pl && bash run.sh 0 {scene} exp_demo && cd ..',
|
257 |
+
shell=True,
|
258 |
+
)
|
259 |
+
import glob
|
260 |
+
# import pdb
|
261 |
+
|
262 |
+
# pdb.set_trace()
|
263 |
+
|
264 |
+
obj_files = glob.glob(f'{cur_dir}/instant-nsr-pl/exp_demo/{scene}/*/save/*.obj', recursive=True)
|
265 |
+
print(obj_files)
|
266 |
+
if obj_files:
|
267 |
+
dir = obj_files[0]
|
268 |
+
return dir
|
269 |
+
|
270 |
+
|
271 |
+
@dataclass
|
272 |
+
class TestConfig:
|
273 |
+
pretrained_model_name_or_path: str
|
274 |
+
pretrained_unet_path:str
|
275 |
+
revision: Optional[str]
|
276 |
+
validation_dataset: Dict
|
277 |
+
save_dir: str
|
278 |
+
seed: Optional[int]
|
279 |
+
validation_batch_size: int
|
280 |
+
dataloader_num_workers: int
|
281 |
+
# save_single_views: bool
|
282 |
+
save_mode: str
|
283 |
+
local_rank: int
|
284 |
+
|
285 |
+
pipe_kwargs: Dict
|
286 |
+
pipe_validation_kwargs: Dict
|
287 |
+
unet_from_pretrained_kwargs: Dict
|
288 |
+
validation_guidance_scales: List[float]
|
289 |
+
validation_grid_nrow: int
|
290 |
+
camera_embedding_lr_mult: float
|
291 |
+
|
292 |
+
num_views: int
|
293 |
+
camera_embedding_type: str
|
294 |
+
|
295 |
+
pred_type: str # joint, or ablation
|
296 |
+
regress_elevation: bool
|
297 |
+
enable_xformers_memory_efficient_attention: bool
|
298 |
+
|
299 |
+
cond_on_normals: bool
|
300 |
+
cond_on_colors: bool
|
301 |
+
|
302 |
+
regress_elevation: bool
|
303 |
+
regress_focal_length: bool
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
def run_demo():
|
308 |
+
from utils.misc import load_config
|
309 |
+
from omegaconf import OmegaConf
|
310 |
+
|
311 |
+
# parse YAML config to OmegaConf
|
312 |
+
cfg = load_config("./configs/test_unclip-512-6view.yaml")
|
313 |
+
# print(cfg)
|
314 |
+
schema = OmegaConf.structured(TestConfig)
|
315 |
+
cfg = OmegaConf.merge(schema, cfg)
|
316 |
+
|
317 |
+
pipeline = load_era3d_pipeline(cfg)
|
318 |
+
torch.set_grad_enabled(False)
|
319 |
+
pipeline.to(f'cuda:{_GPU_ID}')
|
320 |
+
|
321 |
+
predictor = sam_init()
|
322 |
+
|
323 |
+
custom_theme = gr.themes.Soft(primary_hue="blue").set(
|
324 |
+
button_secondary_background_fill="*neutral_100", button_secondary_background_fill_hover="*neutral_200"
|
325 |
+
)
|
326 |
+
custom_css = '''#disp_image {
|
327 |
+
text-align: center; /* Horizontally center the content */
|
328 |
+
}'''
|
329 |
+
|
330 |
+
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
|
331 |
+
with gr.Row():
|
332 |
+
with gr.Column(scale=1):
|
333 |
+
gr.Markdown('# ' + _TITLE)
|
334 |
+
gr.Markdown(_DESCRIPTION)
|
335 |
+
with gr.Row(variant='panel'):
|
336 |
+
with gr.Column(scale=1):
|
337 |
+
input_image = gr.Image(type='pil', image_mode='RGBA', height=768, label='Input image')
|
338 |
+
|
339 |
+
with gr.Column(scale=1):
|
340 |
+
processed_image = gr.Image(
|
341 |
+
type='pil',
|
342 |
+
label="Processed Image",
|
343 |
+
interactive=False,
|
344 |
+
height=768,
|
345 |
+
image_mode='RGBA',
|
346 |
+
elem_id="disp_image",
|
347 |
+
visible=True,
|
348 |
+
)
|
349 |
+
# with gr.Column(scale=1):
|
350 |
+
# ## add 3D Model
|
351 |
+
# obj_3d = gr.Model3D(
|
352 |
+
# # clear_color=[0.0, 0.0, 0.0, 0.0],
|
353 |
+
# label="3D Model", height=320,
|
354 |
+
# # camera_position=[0,0,2.0]
|
355 |
+
# )
|
356 |
+
processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False)
|
357 |
+
with gr.Row(variant='panel'):
|
358 |
+
with gr.Column(scale=1):
|
359 |
+
example_folder = os.path.join(os.path.dirname(__file__), "./examples")
|
360 |
+
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
|
361 |
+
gr.Examples(
|
362 |
+
examples=example_fns,
|
363 |
+
inputs=[input_image],
|
364 |
+
outputs=[input_image],
|
365 |
+
cache_examples=False,
|
366 |
+
label='Examples (click one of the images below to start)',
|
367 |
+
examples_per_page=30,
|
368 |
+
)
|
369 |
+
with gr.Column(scale=1):
|
370 |
+
with gr.Accordion('Advanced options', open=True):
|
371 |
+
with gr.Row():
|
372 |
+
with gr.Column():
|
373 |
+
input_processing = gr.CheckboxGroup(
|
374 |
+
['Background Removal'],
|
375 |
+
label='Input Image Preprocessing',
|
376 |
+
value=['Background Removal'],
|
377 |
+
info='untick this, if masked image with alpha channel',
|
378 |
+
)
|
379 |
+
with gr.Column():
|
380 |
+
output_processing = gr.CheckboxGroup(
|
381 |
+
['Write Results'], label='write the results in ./outputs folder', value=['Write Results']
|
382 |
+
)
|
383 |
+
with gr.Row():
|
384 |
+
with gr.Column():
|
385 |
+
scale_slider = gr.Slider(1, 5, value=3, step=1, label='Classifier Free Guidance Scale')
|
386 |
+
with gr.Column():
|
387 |
+
steps_slider = gr.Slider(15, 100, value=40, step=1, label='Number of Diffusion Inference Steps')
|
388 |
+
with gr.Row():
|
389 |
+
with gr.Column():
|
390 |
+
seed = gr.Number(600, label='Seed')
|
391 |
+
with gr.Column():
|
392 |
+
crop_size = gr.Number(420, label='Crop size')
|
393 |
+
|
394 |
+
mode = gr.Textbox('train', visible=False)
|
395 |
+
data_dir = gr.Textbox('outputs', visible=False)
|
396 |
+
# with gr.Row():
|
397 |
+
# method = gr.Radio(choices=['instant-nsr-pl', 'NeuS'], label='Method (Default: instant-nsr-pl)', value='instant-nsr-pl')
|
398 |
+
run_btn = gr.Button('Generate Normals and Colors', variant='primary', interactive=True)
|
399 |
+
# recon_btn = gr.Button('Reconstruct 3D model', variant='primary', interactive=True)
|
400 |
+
# gr.Markdown("<span style='color:red'>First click Generate button, then click Reconstruct button. Reconstruction may cost several minutes.</span>")
|
401 |
+
|
402 |
+
with gr.Row():
|
403 |
+
view_1 = gr.Image(interactive=False, height=512, show_label=False)
|
404 |
+
view_2 = gr.Image(interactive=False, height=512, show_label=False)
|
405 |
+
view_3 = gr.Image(interactive=False, height=512, show_label=False)
|
406 |
+
view_4 = gr.Image(interactive=False, height=512, show_label=False)
|
407 |
+
view_5 = gr.Image(interactive=False, height=512, show_label=False)
|
408 |
+
view_6 = gr.Image(interactive=False, height=512, show_label=False)
|
409 |
+
with gr.Row():
|
410 |
+
normal_1 = gr.Image(interactive=False, height=512, show_label=False)
|
411 |
+
normal_2 = gr.Image(interactive=False, height=512, show_label=False)
|
412 |
+
normal_3 = gr.Image(interactive=False, height=512, show_label=False)
|
413 |
+
normal_4 = gr.Image(interactive=False, height=512, show_label=False)
|
414 |
+
normal_5 = gr.Image(interactive=False, height=512, show_label=False)
|
415 |
+
normal_6 = gr.Image(interactive=False, height=512, show_label=False)
|
416 |
+
|
417 |
+
run_btn.click(
|
418 |
+
fn=partial(preprocess, predictor), inputs=[input_image, input_processing], outputs=[processed_image_highres, processed_image], queue=True
|
419 |
+
).success(
|
420 |
+
fn=partial(run_pipeline, pipeline, cfg),
|
421 |
+
inputs=[processed_image_highres, scale_slider, steps_slider, seed, crop_size, output_processing],
|
422 |
+
outputs=[view_1, view_2, view_3, view_4, view_5, view_6, normal_1, normal_2, normal_3, normal_4, normal_5, normal_6],
|
423 |
+
)
|
424 |
+
# recon_btn.click(
|
425 |
+
# process_3d, inputs=[mode, data_dir, scale_slider, crop_size], outputs=[obj_3d]
|
426 |
+
# )
|
427 |
+
|
428 |
+
demo.queue().launch(share=True, max_threads=80)
|
429 |
+
|
430 |
+
|
431 |
+
if __name__ == '__main__':
|
432 |
+
fire.Fire(run_demo)
|