File size: 8,983 Bytes
4e9395b
038a94a
 
40e9659
b962691
4e9395b
 
 
 
 
b962691
 
4e9395b
 
 
 
 
 
b962691
 
4e9395b
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec4d4f
 
b849cff
 
4e9395b
 
 
b962691
4e9395b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
038a94a
4e9395b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40e9659
 
 
 
 
 
 
 
 
 
 
 
 
4e9395b
038a94a
4e9395b
 
 
 
 
 
40e9659
 
 
 
 
 
 
 
 
4e9395b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import spaces

import nltk
nltk.download('punkt',quiet=True)
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
import gradio as gr
from PIL import Image
from happytransformer import HappyTextToText, TTSettings
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,logging
from transformers.integrations import deepspeed
import re
from lang_list import (
    LANGUAGE_NAME_TO_CODE,
    T2TT_TARGET_LANGUAGE_NAMES,
    TEXT_SOURCE_LANGUAGE_NAMES,
)
logging.set_verbosity_error()

DEFAULT_TARGET_LANGUAGE = "English"
from transformers import SeamlessM4TForTextToText
from transformers import AutoProcessor
model = SeamlessM4TForTextToText.from_pretrained("facebook/hf-seamless-m4t-medium")
processor = AutoProcessor.from_pretrained("facebook/hf-seamless-m4t-medium")

# OCR Predictor initialization
OCRpredictor = ocr_predictor(det_arch='db_mobilenet_v3_large', reco_arch='crnn_vgg16_bn', pretrained=True)

# Grammar Correction Model initialization
happy_tt = HappyTextToText("T5", "vennify/t5-base-grammar-correction")
grammar_args = TTSettings(num_beams=5, min_length=1)

# Spell Check Model initialization
OCRtokenizer = AutoTokenizer.from_pretrained("Bhuvana/t5-base-spellchecker", use_fast=False)
OCRmodel = AutoModelForSeq2SeqLM.from_pretrained("Bhuvana/t5-base-spellchecker")
# zero = torch.Tensor([0]).cuda()
# print(zero.device) 


def correct_spell(inputs):
    input_ids = OCRtokenizer.encode(inputs, return_tensors='pt')
    sample_output = OCRmodel.generate(
        input_ids,
        do_sample=True,
        max_length=512,
        top_p=0.99,
        num_return_sequences=1
    )
    res = OCRtokenizer.decode(sample_output[0], skip_special_tokens=True)
    return res

def process_text_in_chunks(text, process_function, max_chunk_size=256):
    # Split text into sentences
    sentences = re.split(r'(?<=[.!?])\s+', text)
    processed_text = ""

    for sentence in sentences:
        # Further split long sentences into smaller chunks
        chunks = [sentence[i:i + max_chunk_size] for i in range(0, len(sentence), max_chunk_size)]
        for chunk in chunks:
            processed_text += process_function(chunk)
        processed_text += " "  # Add space after each processed sentence

    return processed_text.strip()
@spaces.GPU(duration=120)
def greet(img, apply_grammar_correction, apply_spell_check):
    img.save("out.jpg")
    doc = DocumentFile.from_images("out.jpg")
    output = OCRpredictor(doc)

    res = ""
    for obj in output.pages:
        for obj1 in obj.blocks:
            for obj2 in obj1.lines:
                for obj3 in obj2.words:
                    res += " " + obj3.value
            res += "\n"
        res += "\n"

    # Process in chunks for grammar correction
    if apply_grammar_correction:
        res = process_text_in_chunks(res, lambda x: happy_tt.generate_text("grammar: " + x, args=grammar_args).text)

    # Process in chunks for spell check
    if apply_spell_check:
        res = process_text_in_chunks(res, correct_spell)

    _output_name = "RESULT_OCR.txt"
    open(_output_name, 'w').write(res)
    return res, _output_name

# Gradio Interface for OCR
demo_ocr = gr.Interface(
    fn=greet,
    inputs=[
        gr.Image(type="pil"),
        gr.Checkbox(label="Apply Grammar Correction"),
        gr.Checkbox(label="Apply Spell Check")
    ],
    outputs=["text", "file"],
    title="DocTR OCR with Grammar and Spell Check",
    description="Upload an image to get the OCR results. Optionally, apply grammar and spell check.",
    examples=[["Examples/Book.png"], ["Examples/News.png"], ["Examples/Manuscript.jpg"], ["Examples/Files.jpg"]]

)


# demo_ocr.launch(debug=True)

def split_text_into_batches(text, max_tokens_per_batch):
    sentences = nltk.sent_tokenize(text)  # Tokenize text into sentences
    batches = []
    current_batch = ""
    for sentence in sentences:
        if len(current_batch) + len(sentence) + 1 <= max_tokens_per_batch:  # Add 1 for space
            current_batch += sentence + " "  # Add sentence to current batch
        else:
            batches.append(current_batch.strip())  # Add current batch to batches list
            current_batch = sentence + " "  # Start a new batch with the current sentence
    if current_batch:
        batches.append(current_batch.strip())  # Add the last batch
    return batches

@spaces.GPU(duration=120)
def run_t2tt(file_uploader , input_text: str, source_language: str, target_language: str) -> (str, bytes):
    if file_uploader is not None:
        with open(file_uploader, 'r') as file:
            input_text=file.read()
    source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
    target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
    max_tokens_per_batch= 256
    batches = split_text_into_batches(input_text, max_tokens_per_batch)
    translated_text = ""
    for batch in batches:
        text_inputs = processor(text=batch, src_lang=source_language_code, return_tensors="pt")
        output_tokens = model.generate(**text_inputs, tgt_lang=target_language_code)
        translated_batch = processor.decode(output_tokens[0].tolist(), skip_special_tokens=True)
        translated_text += translated_batch + " "
    output=translated_text.strip()
    _output_name = "result.txt"
    open(_output_name, 'w').write(output)
    return str(output), _output_name

with gr.Blocks() as demo_t2tt:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                file_uploader = gr.File(label="Upload a text file (Optional)")
                input_text = gr.Textbox(label="Input text")
                with gr.Row():
                    source_language = gr.Dropdown(
                        label="Source language",
                        choices=TEXT_SOURCE_LANGUAGE_NAMES,
                        value="Punjabi",
                    )
                    target_language = gr.Dropdown(
                        label="Target language",
                        choices=T2TT_TARGET_LANGUAGE_NAMES,
                        value=DEFAULT_TARGET_LANGUAGE,
                    )
            btn = gr.Button("Translate")
        with gr.Column():
            output_text = gr.Textbox(label="Translated text")
            output_file = gr.File(label="Translated text file")

    gr.Examples(
        examples=[
            [
                None,
                "The sinister destruction of the holy Akal Takht and the ruthless massacre of thousands of innocent pilgrims had unmasked the deep-seated hatred and animosity that the Indian Government had been nurturing against Sikhs ever since independence",
                "English",
                "Punjabi",
            ],
            [
                None,
                "It contains. much useful information about administrative, revenue, judicial and ecclesiastical activities in various areas which, it is hoped, would supplement the information available in official records.",
                "English",
                "Hindi",
            ],
            [
                None,
                "दुनिया में बहुत सी अलग-अलग भाषाएं हैं और उनमें अपने वर्ण और शब्दों का भंडार होता है. इसमें में कुछ उनके अपने शब्द होते हैं तो कुछ ऐसे भी हैं, जो दूसरी भाषाओं से लिए जाते हैं.",
                "Hindi",
                "Punjabi",
            ],
            [
                None,
                "ਸੂੂਬੇ ਦੇ ਕਈ ਜ਼ਿਲ੍ਹਿਆਂ ’ਚ ਬੁੱਧਵਾਰ ਸਵੇਰੇ ਸੰਘਣੀ ਧੁੰਦ ਛਾਈ ਰਹੀ ਤੇ ਤੇਜ਼ ਹਵਾਵਾਂ ਨੇ ਕਾਂਬਾ ਹੋਰ ਵਧਾ ਦਿੱਤਾ। ਸੱਤ ਸ਼ਹਿਰਾਂ ’ਚ ਦਿਨ ਦਾ ਤਾਪਮਾਨ ਦਸ ਡਿਗਰੀ ਸੈਲਸੀਅਸ ਦੇ ਆਸਪਾਸ ਰਿਹਾ। ਸੂਬੇ ’ਚ ਵੱਧ ਤੋਂ ਵੱਧ ਤਾਪਮਾਨ ’ਚ ਵੀ ਦਸ ਡਿਗਰੀ ਸੈਲਸੀਅਸ ਦੀ ਗਿਰਾਵਟ ਦਰਜ ਕੀਤੀ ਗਈ",
                "Punjabi",
                "English",
            ],
        ],
        inputs=[file_uploader ,input_text, source_language, target_language],
        outputs=[output_text, output_file],
        fn=run_t2tt,
        cache_examples=False,
        api_name=False,
    )

    gr.on(
        triggers=[input_text.submit, btn.click],
        fn=run_t2tt,
        inputs=[file_uploader, input_text, source_language, target_language],
        outputs=[output_text, output_file],
        api_name="t2tt",
    )

with gr.Blocks() as demo:
    with gr.Tabs():
        with gr.Tab(label="OCR"):
            demo_ocr.render()
        with gr.Tab(label="Translate"):
            demo_t2tt.render()

if __name__ == "__main__":
    demo.launch()