Spaces:
Sleeping
Sleeping
File size: 8,983 Bytes
4e9395b 038a94a 40e9659 b962691 4e9395b b962691 4e9395b b962691 4e9395b 6ec4d4f b849cff 4e9395b b962691 4e9395b 038a94a 4e9395b 40e9659 4e9395b 038a94a 4e9395b 40e9659 4e9395b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import os
import spaces
import nltk
nltk.download('punkt',quiet=True)
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
import gradio as gr
from PIL import Image
from happytransformer import HappyTextToText, TTSettings
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,logging
from transformers.integrations import deepspeed
import re
from lang_list import (
LANGUAGE_NAME_TO_CODE,
T2TT_TARGET_LANGUAGE_NAMES,
TEXT_SOURCE_LANGUAGE_NAMES,
)
logging.set_verbosity_error()
DEFAULT_TARGET_LANGUAGE = "English"
from transformers import SeamlessM4TForTextToText
from transformers import AutoProcessor
model = SeamlessM4TForTextToText.from_pretrained("facebook/hf-seamless-m4t-medium")
processor = AutoProcessor.from_pretrained("facebook/hf-seamless-m4t-medium")
# OCR Predictor initialization
OCRpredictor = ocr_predictor(det_arch='db_mobilenet_v3_large', reco_arch='crnn_vgg16_bn', pretrained=True)
# Grammar Correction Model initialization
happy_tt = HappyTextToText("T5", "vennify/t5-base-grammar-correction")
grammar_args = TTSettings(num_beams=5, min_length=1)
# Spell Check Model initialization
OCRtokenizer = AutoTokenizer.from_pretrained("Bhuvana/t5-base-spellchecker", use_fast=False)
OCRmodel = AutoModelForSeq2SeqLM.from_pretrained("Bhuvana/t5-base-spellchecker")
# zero = torch.Tensor([0]).cuda()
# print(zero.device)
def correct_spell(inputs):
input_ids = OCRtokenizer.encode(inputs, return_tensors='pt')
sample_output = OCRmodel.generate(
input_ids,
do_sample=True,
max_length=512,
top_p=0.99,
num_return_sequences=1
)
res = OCRtokenizer.decode(sample_output[0], skip_special_tokens=True)
return res
def process_text_in_chunks(text, process_function, max_chunk_size=256):
# Split text into sentences
sentences = re.split(r'(?<=[.!?])\s+', text)
processed_text = ""
for sentence in sentences:
# Further split long sentences into smaller chunks
chunks = [sentence[i:i + max_chunk_size] for i in range(0, len(sentence), max_chunk_size)]
for chunk in chunks:
processed_text += process_function(chunk)
processed_text += " " # Add space after each processed sentence
return processed_text.strip()
@spaces.GPU(duration=120)
def greet(img, apply_grammar_correction, apply_spell_check):
img.save("out.jpg")
doc = DocumentFile.from_images("out.jpg")
output = OCRpredictor(doc)
res = ""
for obj in output.pages:
for obj1 in obj.blocks:
for obj2 in obj1.lines:
for obj3 in obj2.words:
res += " " + obj3.value
res += "\n"
res += "\n"
# Process in chunks for grammar correction
if apply_grammar_correction:
res = process_text_in_chunks(res, lambda x: happy_tt.generate_text("grammar: " + x, args=grammar_args).text)
# Process in chunks for spell check
if apply_spell_check:
res = process_text_in_chunks(res, correct_spell)
_output_name = "RESULT_OCR.txt"
open(_output_name, 'w').write(res)
return res, _output_name
# Gradio Interface for OCR
demo_ocr = gr.Interface(
fn=greet,
inputs=[
gr.Image(type="pil"),
gr.Checkbox(label="Apply Grammar Correction"),
gr.Checkbox(label="Apply Spell Check")
],
outputs=["text", "file"],
title="DocTR OCR with Grammar and Spell Check",
description="Upload an image to get the OCR results. Optionally, apply grammar and spell check.",
examples=[["Examples/Book.png"], ["Examples/News.png"], ["Examples/Manuscript.jpg"], ["Examples/Files.jpg"]]
)
# demo_ocr.launch(debug=True)
def split_text_into_batches(text, max_tokens_per_batch):
sentences = nltk.sent_tokenize(text) # Tokenize text into sentences
batches = []
current_batch = ""
for sentence in sentences:
if len(current_batch) + len(sentence) + 1 <= max_tokens_per_batch: # Add 1 for space
current_batch += sentence + " " # Add sentence to current batch
else:
batches.append(current_batch.strip()) # Add current batch to batches list
current_batch = sentence + " " # Start a new batch with the current sentence
if current_batch:
batches.append(current_batch.strip()) # Add the last batch
return batches
@spaces.GPU(duration=120)
def run_t2tt(file_uploader , input_text: str, source_language: str, target_language: str) -> (str, bytes):
if file_uploader is not None:
with open(file_uploader, 'r') as file:
input_text=file.read()
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
max_tokens_per_batch= 256
batches = split_text_into_batches(input_text, max_tokens_per_batch)
translated_text = ""
for batch in batches:
text_inputs = processor(text=batch, src_lang=source_language_code, return_tensors="pt")
output_tokens = model.generate(**text_inputs, tgt_lang=target_language_code)
translated_batch = processor.decode(output_tokens[0].tolist(), skip_special_tokens=True)
translated_text += translated_batch + " "
output=translated_text.strip()
_output_name = "result.txt"
open(_output_name, 'w').write(output)
return str(output), _output_name
with gr.Blocks() as demo_t2tt:
with gr.Row():
with gr.Column():
with gr.Group():
file_uploader = gr.File(label="Upload a text file (Optional)")
input_text = gr.Textbox(label="Input text")
with gr.Row():
source_language = gr.Dropdown(
label="Source language",
choices=TEXT_SOURCE_LANGUAGE_NAMES,
value="Punjabi",
)
target_language = gr.Dropdown(
label="Target language",
choices=T2TT_TARGET_LANGUAGE_NAMES,
value=DEFAULT_TARGET_LANGUAGE,
)
btn = gr.Button("Translate")
with gr.Column():
output_text = gr.Textbox(label="Translated text")
output_file = gr.File(label="Translated text file")
gr.Examples(
examples=[
[
None,
"The sinister destruction of the holy Akal Takht and the ruthless massacre of thousands of innocent pilgrims had unmasked the deep-seated hatred and animosity that the Indian Government had been nurturing against Sikhs ever since independence",
"English",
"Punjabi",
],
[
None,
"It contains. much useful information about administrative, revenue, judicial and ecclesiastical activities in various areas which, it is hoped, would supplement the information available in official records.",
"English",
"Hindi",
],
[
None,
"दुनिया में बहुत सी अलग-अलग भाषाएं हैं और उनमें अपने वर्ण और शब्दों का भंडार होता है. इसमें में कुछ उनके अपने शब्द होते हैं तो कुछ ऐसे भी हैं, जो दूसरी भाषाओं से लिए जाते हैं.",
"Hindi",
"Punjabi",
],
[
None,
"ਸੂੂਬੇ ਦੇ ਕਈ ਜ਼ਿਲ੍ਹਿਆਂ ’ਚ ਬੁੱਧਵਾਰ ਸਵੇਰੇ ਸੰਘਣੀ ਧੁੰਦ ਛਾਈ ਰਹੀ ਤੇ ਤੇਜ਼ ਹਵਾਵਾਂ ਨੇ ਕਾਂਬਾ ਹੋਰ ਵਧਾ ਦਿੱਤਾ। ਸੱਤ ਸ਼ਹਿਰਾਂ ’ਚ ਦਿਨ ਦਾ ਤਾਪਮਾਨ ਦਸ ਡਿਗਰੀ ਸੈਲਸੀਅਸ ਦੇ ਆਸਪਾਸ ਰਿਹਾ। ਸੂਬੇ ’ਚ ਵੱਧ ਤੋਂ ਵੱਧ ਤਾਪਮਾਨ ’ਚ ਵੀ ਦਸ ਡਿਗਰੀ ਸੈਲਸੀਅਸ ਦੀ ਗਿਰਾਵਟ ਦਰਜ ਕੀਤੀ ਗਈ",
"Punjabi",
"English",
],
],
inputs=[file_uploader ,input_text, source_language, target_language],
outputs=[output_text, output_file],
fn=run_t2tt,
cache_examples=False,
api_name=False,
)
gr.on(
triggers=[input_text.submit, btn.click],
fn=run_t2tt,
inputs=[file_uploader, input_text, source_language, target_language],
outputs=[output_text, output_file],
api_name="t2tt",
)
with gr.Blocks() as demo:
with gr.Tabs():
with gr.Tab(label="OCR"):
demo_ocr.render()
with gr.Tab(label="Translate"):
demo_t2tt.render()
if __name__ == "__main__":
demo.launch() |