File size: 16,491 Bytes
4e9395b
038a94a
 
40e9659
b962691
772c51d
4e9395b
 
 
 
884f6b2
 
4e9395b
b962691
 
4e9395b
5a08d5f
4e9395b
 
 
 
 
b962691
 
4e9395b
 
 
45a9477
 
4e9395b
942ca32
 
 
 
4e9395b
 
 
 
 
 
 
 
6ec4d4f
 
b849cff
 
4e9395b
 
 
b962691
4e9395b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b1a45
31b7407
 
 
 
 
 
884f6b2
31b7407
 
 
 
 
884f6b2
31b7407
 
5797fbb
 
 
942ca32
5797fbb
 
 
 
 
 
 
 
942ca32
4e9395b
 
 
 
 
 
 
 
 
 
884f6b2
 
 
 
 
 
 
 
 
 
 
 
 
4e9395b
 
 
 
 
 
 
31b7407
60ad738
4e9395b
60ad738
 
 
 
 
 
4e9395b
60ad738
9495044
 
 
 
 
 
 
 
 
 
60ad738
4e9395b
 
 
 
 
40e9659
 
 
 
 
 
 
 
 
 
 
 
 
4e9395b
57b1a45
4e9395b
 
 
 
 
 
d4613aa
40e9659
 
 
 
 
 
 
 
4e9395b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aabcd56
4e9395b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
483b79c
4e9395b
 
 
 
 
 
 
 
 
 
 
5a08d5f
 
 
 
 
 
 
 
 
9124b11
 
5a08d5f
 
 
 
 
 
df89d31
5a08d5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e9395b
 
 
 
 
 
5a08d5f
 
4e9395b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import os
import spaces

import nltk
nltk.download('punkt',quiet=True)
nltk.download('punkt_tab')
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
import gradio as gr
from PIL import Image
import base64
from utils import HocrParser
from happytransformer import HappyTextToText, TTSettings
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,logging
from transformers.integrations import deepspeed
import re
import torch
from lang_list import (
    LANGUAGE_NAME_TO_CODE,
    T2TT_TARGET_LANGUAGE_NAMES,
    TEXT_SOURCE_LANGUAGE_NAMES,
)
logging.set_verbosity_error()

DEFAULT_TARGET_LANGUAGE = "English"
from transformers import SeamlessM4TForTextToText
from transformers import AutoProcessor
model = SeamlessM4TForTextToText.from_pretrained("facebook/hf-seamless-m4t-large")
processor = AutoProcessor.from_pretrained("facebook/hf-seamless-m4t-large")


import pytesseract as pt
import cv2

# OCR Predictor initialization
OCRpredictor = ocr_predictor(det_arch='db_mobilenet_v3_large', reco_arch='crnn_vgg16_bn', pretrained=True)

# Grammar Correction Model initialization
happy_tt = HappyTextToText("T5", "vennify/t5-base-grammar-correction")
grammar_args = TTSettings(num_beams=5, min_length=1)

# Spell Check Model initialization
OCRtokenizer = AutoTokenizer.from_pretrained("Bhuvana/t5-base-spellchecker", use_fast=False)
OCRmodel = AutoModelForSeq2SeqLM.from_pretrained("Bhuvana/t5-base-spellchecker")
# zero = torch.Tensor([0]).cuda()
# print(zero.device) 


def correct_spell(inputs):
    input_ids = OCRtokenizer.encode(inputs, return_tensors='pt')
    sample_output = OCRmodel.generate(
        input_ids,
        do_sample=True,
        max_length=512,
        top_p=0.99,
        num_return_sequences=1
    )
    res = OCRtokenizer.decode(sample_output[0], skip_special_tokens=True)
    return res

def process_text_in_chunks(text, process_function, max_chunk_size=256):
    # Split text into sentences
    sentences = re.split(r'(?<=[.!?])\s+', text)
    processed_text = ""

    for sentence in sentences:
        # Further split long sentences into smaller chunks
        chunks = [sentence[i:i + max_chunk_size] for i in range(0, len(sentence), max_chunk_size)]
        for chunk in chunks:
            processed_text += process_function(chunk)
        processed_text += " "  # Add space after each processed sentence

    return processed_text.strip()
@spaces.GPU(duration=60)
def greet(img, apply_grammar_correction, apply_spell_check,lang_of_input):

    if (lang_of_input=="Hindi"):
        res = pt.image_to_string(img,lang='hin')
        _output_name = "RESULT_OCR.txt"
        open(_output_name, 'w').write(res)
        return res, _output_name, None

    if (lang_of_input=="Punjabi"):
        res = pt.image_to_string(img,lang='pan')
        _output_name = "RESULT_OCR.txt"
        open(_output_name, 'w').write(res)
        return res, _output_name, None
       
        
    img.save("out.jpg")
    doc = DocumentFile.from_images("out.jpg")
    output = OCRpredictor(doc)

    res = ""
    for obj in output.pages:
        for obj1 in obj.blocks:
            for obj2 in obj1.lines:
                for obj3 in obj2.words:
                    res += " " + obj3.value
            res += "\n"
        res += "\n"
        
    # Process in chunks for grammar correction
    if apply_grammar_correction:
        res = process_text_in_chunks(res, lambda x: happy_tt.generate_text("grammar: " + x, args=grammar_args).text)

    # Process in chunks for spell check
    if apply_spell_check:
        res = process_text_in_chunks(res, correct_spell)

    _output_name = "RESULT_OCR.txt"
    open(_output_name, 'w').write(res)

    # Convert OCR output to searchable PDF
    _output_name_pdf="RESULT_OCR.pdf"
    xml_outputs = output.export_as_xml()
    parser = HocrParser()
    base64_encoded_pdfs = list()
    for i, (xml, img) in enumerate(zip(xml_outputs, doc)):
      xml_element_tree = xml[1]
      parser.export_pdfa(_output_name_pdf,
            hocr=xml_element_tree, image=img)
      with open(_output_name_pdf, 'rb') as f:
            base64_encoded_pdfs.append(base64.b64encode(f.read()))
    return res, _output_name, _output_name_pdf

# Gradio Interface for OCR
demo_ocr = gr.Interface(
    fn=greet,
    inputs=[
        gr.Image(type="pil"),
        gr.Checkbox(label="Apply Grammar Correction"),
        gr.Checkbox(label="Apply Spell Check"),
        gr.Dropdown(["English","Hindi","Punjabi"], label="Select Language", value="English")
    ],
    outputs=[
        gr.Textbox(label="OCR Text"),
        gr.File(label="Text file"),
        gr.File(label="Searchable PDF File(English only)")
    ],
    title="OCR with Grammar and Spell Check",
    description="Upload an image to get the OCR results. Optionally, apply grammar and spell check.",
    examples=[
        ["Examples/12.jpg",False,False, "Punjabi"],
        ["Examples/26.jpg",False,False, "Punjabi"],
        ["Examples/36.jpg",False,False, "Punjabi"]],
        # ["Examples/Book.png",False, False, "English"],
        # ["Examples/News.png",False, False, "English"],
        # ["Examples/Manuscript.jpg",False, False, "English"],
        # ["Examples/Files.jpg",False, False, "English"],
        # ["Examples/Hindi.jpg",False, False, "Hindi"],
        # ["Examples/Hindi-manu.jpg",False, False, "Hindi"],
        # ["Examples/Punjabi_machine.png",False, False, "Punjabi"]],
    cache_examples=False
)


# demo_ocr.launch(debug=True)

def split_text_into_batches(text, max_tokens_per_batch):
    sentences = nltk.sent_tokenize(text)  # Tokenize text into sentences
    batches = []
    current_batch = ""
    for sentence in sentences:
        if len(current_batch) + len(sentence) + 1 <= max_tokens_per_batch:  # Add 1 for space
            current_batch += sentence + " "  # Add sentence to current batch
        else:
            batches.append(current_batch.strip())  # Add current batch to batches list
            current_batch = sentence + " "  # Start a new batch with the current sentence
    if current_batch:
        batches.append(current_batch.strip())  # Add the last batch
    return batches

@spaces.GPU(duration=60)
def run_t2tt(file_uploader , input_text: str, source_language: str, target_language: str) -> (str, bytes):
    if file_uploader is not None:
        with open(file_uploader, 'r') as file:
            input_text=file.read()
    source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
    target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
    max_tokens_per_batch= 2048
    batches = split_text_into_batches(input_text, max_tokens_per_batch)
    translated_text = ""
    for batch in batches:
        text_inputs = processor(text=batch, src_lang=source_language_code, return_tensors="pt")
        output_tokens = model.generate(**text_inputs, tgt_lang=target_language_code)
        translated_batch = processor.decode(output_tokens[0].tolist(), skip_special_tokens=True)
        translated_text += translated_batch + " "
    output=translated_text.strip()
    _output_name = "result.txt"
    open(_output_name, 'w').write(output)
    return str(output), _output_name

with gr.Blocks() as demo_t2tt:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                file_uploader = gr.File(label="Upload a text file (Optional)")
                input_text = gr.Textbox(label="Input text")
                with gr.Row():
                    source_language = gr.Dropdown(
                        label="Source language",
                        choices=TEXT_SOURCE_LANGUAGE_NAMES,
                        value="Punjabi",
                    )
                    target_language = gr.Dropdown(
                        label="Target language",
                        choices=T2TT_TARGET_LANGUAGE_NAMES,
                        value=DEFAULT_TARGET_LANGUAGE,
                    )
            btn = gr.Button("Translate")
        with gr.Column():
            output_text = gr.Textbox(label="Translated text")
            output_file = gr.File(label="Translated text file")

    gr.Examples(
        examples=[
            [
                None,
                "The annual harvest festival of Baisakhi in Punjab showcases the region's agricultural prosperity and cultural vibrancy. This joyful occasion brings together people of all ages to celebrate with traditional music, dance, and feasts, reflecting the enduring spirit and community bond of Punjab's people",
                "English",
                "Punjabi",
            ],
            [
                None,
                "It contains. much useful information about administrative, revenue, judicial and ecclesiastical activities in various areas which, it is hoped, would supplement the information available in official records.",
                "English",
                "Hindi",
            ],
            [
                None,
                "दुनिया में बहुत सी अलग-अलग भाषाएं हैं और उनमें अपने वर्ण और शब्दों का भंडार होता है. इसमें में कुछ उनके अपने शब्द होते हैं तो कुछ ऐसे भी हैं, जो दूसरी भाषाओं से लिए जाते हैं.",
                "Hindi",
                "Punjabi",
            ],
            [
                None,
                "ਸੂੂਬੇ ਦੇ ਕਈ ਜ਼ਿਲ੍ਹਿਆਂ ’ਚ ਬੁੱਧਵਾਰ ਸਵੇਰੇ ਸੰਘਣੀ ਧੁੰਦ ਛਾਈ ਰਹੀ ਤੇ ਤੇਜ਼ ਹਵਾਵਾਂ ਨੇ ਕਾਂਬਾ ਹੋਰ ਵਧਾ ਦਿੱਤਾ। ਸੱਤ ਸ਼ਹਿਰਾਂ ’ਚ ਦਿਨ ਦਾ ਤਾਪਮਾਨ ਦਸ ਡਿਗਰੀ ਸੈਲਸੀਅਸ ਦੇ ਆਸਪਾਸ ਰਿਹਾ। ਸੂਬੇ ’ਚ ਵੱਧ ਤੋਂ ਵੱਧ ਤਾਪਮਾਨ ’ਚ ਵੀ ਦਸ ਡਿਗਰੀ ਸੈਲਸੀਅਸ ਦੀ ਗਿਰਾਵਟ ਦਰਜ ਕੀਤੀ ਗਈ",
                "Punjabi",
                "English",
            ],
        ],
        inputs=[file_uploader ,input_text, source_language, target_language],
        outputs=[output_text, output_file],
        fn=run_t2tt,
        cache_examples=False,
        api_name=False,
    )

    gr.on(
        triggers=[input_text.submit, btn.click],
        fn=run_t2tt,
        inputs=[file_uploader, input_text, source_language, target_language],
        outputs=[output_text, output_file],
        api_name="t2tt",
    )


#RAG
import utils
from langchain_mistralai import ChatMistralAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.vectorstores import Chroma
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_core.runnables import RunnablePassthrough
import chromadb.api
chromadb.api.client.SharedSystemClient.clear_system_cache()
os.environ['MISTRAL_API_KEY'] = 'XuyOObDE7trMbpAeI7OXYr3dnmoWy3L0'

class VectorData():
    def __init__(self):
        embedding_model_name = 'l3cube-pune/punjabi-sentence-similarity-sbert'

        model_kwargs = {'device':'cpu',"trust_remote_code": True}

        self.embeddings = HuggingFaceEmbeddings(
            model_name=embedding_model_name,
            model_kwargs=model_kwargs
        )

        self.vectorstore = Chroma(persist_directory="chroma_db", embedding_function=self.embeddings)
        self.retriever = self.vectorstore.as_retriever()
        self.ingested_files = []
        self.prompt = ChatPromptTemplate.from_messages(
            [
                (
                    "system",
                    """Answer the question based on the given context. Dont give any ans if context is not valid to question. Always give the source of context: 
                    {context}
                    """,
                ),
                ("human", "{question}"),
            ]
        )
        self.llm = ChatMistralAI(model="mistral-large-latest")
        self.rag_chain = (
                {"context": self.retriever, "question": RunnablePassthrough()}
                | self.prompt
                | self.llm
                | StrOutputParser()
            )

    def add_file(self,file):
        if file is not None:
            self.ingested_files.append(file.name.split('/')[-1])
            self.retriever, self.vectorstore = utils.add_doc(file,self.vectorstore)
            self.rag_chain = (
                {"context": self.retriever, "question": RunnablePassthrough()}
                | self.prompt
                | self.llm
                | StrOutputParser()
            )
        return [[name] for name in self.ingested_files]

    def delete_file_by_name(self,file_name):
        if file_name in self.ingested_files:
            self.retriever, self.vectorstore = utils.delete_doc(file_name,self.vectorstore)
            self.ingested_files.remove(file_name)
        return [[name] for name in self.ingested_files]

    def delete_all_files(self):
        self.ingested_files.clear()
        self.retriever, self.vectorstore = utils.delete_all_doc(self.vectorstore)
        return []
    
data_obj = VectorData()

# Function to handle question answering
def answer_question(question):
    if question.strip():
        return f'{data_obj.rag_chain.invoke(question)}'
    return "Please enter a question."

with gr.Blocks() as rag_interface:
    # Title and Description
    gr.Markdown("# RAG Interface")
    gr.Markdown("Manage documents and ask questions with a Retrieval-Augmented Generation (RAG) system.")

    with gr.Row():
        # Left Column: File Management
        with gr.Column():
            gr.Markdown("### File Management")

            # File upload and ingest
            file_input = gr.File(label="Upload File to Ingest")
            add_file_button = gr.Button("Ingest File")

            # Scrollable list for ingested files
            ingested_files_box = gr.Dataframe(
                headers=["Files"], 
                datatype="str",
                row_count=4,  # Limits the visible rows to create a scrollable view
                interactive=False
            )

            # Radio buttons to choose delete option
            delete_option = gr.Radio(choices=["Delete by File Name", "Delete All Files"], label="Delete Option")
            file_name_input = gr.Textbox(label="Enter File Name to Delete", visible=False)
            delete_button = gr.Button("Delete Selected")

            # Show or hide file name input based on delete option selection
            def toggle_file_input(option):
                return gr.update(visible=(option == "Delete by File Name"))

            delete_option.change(fn=toggle_file_input, inputs=delete_option, outputs=file_name_input)

            # Handle file ingestion
            add_file_button.click(
                fn=data_obj.add_file,
                inputs=file_input,
                outputs=ingested_files_box
            )

            # Handle delete based on selected option
            def delete_action(delete_option, file_name):
                if delete_option == "Delete by File Name" and file_name:
                    return data_obj.delete_file_by_name(file_name)
                elif delete_option == "Delete All Files":
                    return data_obj.delete_all_files()
                else:
                    return [[name] for name in data_obj.ingested_files]

            delete_button.click(
                fn=delete_action,
                inputs=[delete_option, file_name_input],
                outputs=ingested_files_box
            )

        # Right Column: Question Answering
        with gr.Column():
            gr.Markdown("### Ask a Question")

            # Question input
            question_input = gr.Textbox(label="Enter your question")

            # Get answer button and answer output
            ask_button = gr.Button("Get Answer")
            answer_output = gr.Textbox(label="Answer", interactive=False)

            ask_button.click(fn=answer_question, inputs=question_input, outputs=answer_output)


with gr.Blocks() as demo:
    with gr.Tabs():
        with gr.Tab(label="OCR"):
            demo_ocr.render()
        with gr.Tab(label="Translate"):
            demo_t2tt.render()
        with gr.Tab(label="RAG"):
            rag_interface.render()

if __name__ == "__main__":
    demo.launch()