Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,491 Bytes
4e9395b 038a94a 40e9659 b962691 772c51d 4e9395b 884f6b2 4e9395b b962691 4e9395b 5a08d5f 4e9395b b962691 4e9395b 45a9477 4e9395b 942ca32 4e9395b 6ec4d4f b849cff 4e9395b b962691 4e9395b 57b1a45 31b7407 884f6b2 31b7407 884f6b2 31b7407 5797fbb 942ca32 5797fbb 942ca32 4e9395b 884f6b2 4e9395b 31b7407 60ad738 4e9395b 60ad738 4e9395b 60ad738 9495044 60ad738 4e9395b 40e9659 4e9395b 57b1a45 4e9395b d4613aa 40e9659 4e9395b aabcd56 4e9395b 483b79c 4e9395b 5a08d5f 9124b11 5a08d5f df89d31 5a08d5f 4e9395b 5a08d5f 4e9395b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import os
import spaces
import nltk
nltk.download('punkt',quiet=True)
nltk.download('punkt_tab')
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
import gradio as gr
from PIL import Image
import base64
from utils import HocrParser
from happytransformer import HappyTextToText, TTSettings
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,logging
from transformers.integrations import deepspeed
import re
import torch
from lang_list import (
LANGUAGE_NAME_TO_CODE,
T2TT_TARGET_LANGUAGE_NAMES,
TEXT_SOURCE_LANGUAGE_NAMES,
)
logging.set_verbosity_error()
DEFAULT_TARGET_LANGUAGE = "English"
from transformers import SeamlessM4TForTextToText
from transformers import AutoProcessor
model = SeamlessM4TForTextToText.from_pretrained("facebook/hf-seamless-m4t-large")
processor = AutoProcessor.from_pretrained("facebook/hf-seamless-m4t-large")
import pytesseract as pt
import cv2
# OCR Predictor initialization
OCRpredictor = ocr_predictor(det_arch='db_mobilenet_v3_large', reco_arch='crnn_vgg16_bn', pretrained=True)
# Grammar Correction Model initialization
happy_tt = HappyTextToText("T5", "vennify/t5-base-grammar-correction")
grammar_args = TTSettings(num_beams=5, min_length=1)
# Spell Check Model initialization
OCRtokenizer = AutoTokenizer.from_pretrained("Bhuvana/t5-base-spellchecker", use_fast=False)
OCRmodel = AutoModelForSeq2SeqLM.from_pretrained("Bhuvana/t5-base-spellchecker")
# zero = torch.Tensor([0]).cuda()
# print(zero.device)
def correct_spell(inputs):
input_ids = OCRtokenizer.encode(inputs, return_tensors='pt')
sample_output = OCRmodel.generate(
input_ids,
do_sample=True,
max_length=512,
top_p=0.99,
num_return_sequences=1
)
res = OCRtokenizer.decode(sample_output[0], skip_special_tokens=True)
return res
def process_text_in_chunks(text, process_function, max_chunk_size=256):
# Split text into sentences
sentences = re.split(r'(?<=[.!?])\s+', text)
processed_text = ""
for sentence in sentences:
# Further split long sentences into smaller chunks
chunks = [sentence[i:i + max_chunk_size] for i in range(0, len(sentence), max_chunk_size)]
for chunk in chunks:
processed_text += process_function(chunk)
processed_text += " " # Add space after each processed sentence
return processed_text.strip()
@spaces.GPU(duration=60)
def greet(img, apply_grammar_correction, apply_spell_check,lang_of_input):
if (lang_of_input=="Hindi"):
res = pt.image_to_string(img,lang='hin')
_output_name = "RESULT_OCR.txt"
open(_output_name, 'w').write(res)
return res, _output_name, None
if (lang_of_input=="Punjabi"):
res = pt.image_to_string(img,lang='pan')
_output_name = "RESULT_OCR.txt"
open(_output_name, 'w').write(res)
return res, _output_name, None
img.save("out.jpg")
doc = DocumentFile.from_images("out.jpg")
output = OCRpredictor(doc)
res = ""
for obj in output.pages:
for obj1 in obj.blocks:
for obj2 in obj1.lines:
for obj3 in obj2.words:
res += " " + obj3.value
res += "\n"
res += "\n"
# Process in chunks for grammar correction
if apply_grammar_correction:
res = process_text_in_chunks(res, lambda x: happy_tt.generate_text("grammar: " + x, args=grammar_args).text)
# Process in chunks for spell check
if apply_spell_check:
res = process_text_in_chunks(res, correct_spell)
_output_name = "RESULT_OCR.txt"
open(_output_name, 'w').write(res)
# Convert OCR output to searchable PDF
_output_name_pdf="RESULT_OCR.pdf"
xml_outputs = output.export_as_xml()
parser = HocrParser()
base64_encoded_pdfs = list()
for i, (xml, img) in enumerate(zip(xml_outputs, doc)):
xml_element_tree = xml[1]
parser.export_pdfa(_output_name_pdf,
hocr=xml_element_tree, image=img)
with open(_output_name_pdf, 'rb') as f:
base64_encoded_pdfs.append(base64.b64encode(f.read()))
return res, _output_name, _output_name_pdf
# Gradio Interface for OCR
demo_ocr = gr.Interface(
fn=greet,
inputs=[
gr.Image(type="pil"),
gr.Checkbox(label="Apply Grammar Correction"),
gr.Checkbox(label="Apply Spell Check"),
gr.Dropdown(["English","Hindi","Punjabi"], label="Select Language", value="English")
],
outputs=[
gr.Textbox(label="OCR Text"),
gr.File(label="Text file"),
gr.File(label="Searchable PDF File(English only)")
],
title="OCR with Grammar and Spell Check",
description="Upload an image to get the OCR results. Optionally, apply grammar and spell check.",
examples=[
["Examples/12.jpg",False,False, "Punjabi"],
["Examples/26.jpg",False,False, "Punjabi"],
["Examples/36.jpg",False,False, "Punjabi"]],
# ["Examples/Book.png",False, False, "English"],
# ["Examples/News.png",False, False, "English"],
# ["Examples/Manuscript.jpg",False, False, "English"],
# ["Examples/Files.jpg",False, False, "English"],
# ["Examples/Hindi.jpg",False, False, "Hindi"],
# ["Examples/Hindi-manu.jpg",False, False, "Hindi"],
# ["Examples/Punjabi_machine.png",False, False, "Punjabi"]],
cache_examples=False
)
# demo_ocr.launch(debug=True)
def split_text_into_batches(text, max_tokens_per_batch):
sentences = nltk.sent_tokenize(text) # Tokenize text into sentences
batches = []
current_batch = ""
for sentence in sentences:
if len(current_batch) + len(sentence) + 1 <= max_tokens_per_batch: # Add 1 for space
current_batch += sentence + " " # Add sentence to current batch
else:
batches.append(current_batch.strip()) # Add current batch to batches list
current_batch = sentence + " " # Start a new batch with the current sentence
if current_batch:
batches.append(current_batch.strip()) # Add the last batch
return batches
@spaces.GPU(duration=60)
def run_t2tt(file_uploader , input_text: str, source_language: str, target_language: str) -> (str, bytes):
if file_uploader is not None:
with open(file_uploader, 'r') as file:
input_text=file.read()
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
max_tokens_per_batch= 2048
batches = split_text_into_batches(input_text, max_tokens_per_batch)
translated_text = ""
for batch in batches:
text_inputs = processor(text=batch, src_lang=source_language_code, return_tensors="pt")
output_tokens = model.generate(**text_inputs, tgt_lang=target_language_code)
translated_batch = processor.decode(output_tokens[0].tolist(), skip_special_tokens=True)
translated_text += translated_batch + " "
output=translated_text.strip()
_output_name = "result.txt"
open(_output_name, 'w').write(output)
return str(output), _output_name
with gr.Blocks() as demo_t2tt:
with gr.Row():
with gr.Column():
with gr.Group():
file_uploader = gr.File(label="Upload a text file (Optional)")
input_text = gr.Textbox(label="Input text")
with gr.Row():
source_language = gr.Dropdown(
label="Source language",
choices=TEXT_SOURCE_LANGUAGE_NAMES,
value="Punjabi",
)
target_language = gr.Dropdown(
label="Target language",
choices=T2TT_TARGET_LANGUAGE_NAMES,
value=DEFAULT_TARGET_LANGUAGE,
)
btn = gr.Button("Translate")
with gr.Column():
output_text = gr.Textbox(label="Translated text")
output_file = gr.File(label="Translated text file")
gr.Examples(
examples=[
[
None,
"The annual harvest festival of Baisakhi in Punjab showcases the region's agricultural prosperity and cultural vibrancy. This joyful occasion brings together people of all ages to celebrate with traditional music, dance, and feasts, reflecting the enduring spirit and community bond of Punjab's people",
"English",
"Punjabi",
],
[
None,
"It contains. much useful information about administrative, revenue, judicial and ecclesiastical activities in various areas which, it is hoped, would supplement the information available in official records.",
"English",
"Hindi",
],
[
None,
"दुनिया में बहुत सी अलग-अलग भाषाएं हैं और उनमें अपने वर्ण और शब्दों का भंडार होता है. इसमें में कुछ उनके अपने शब्द होते हैं तो कुछ ऐसे भी हैं, जो दूसरी भाषाओं से लिए जाते हैं.",
"Hindi",
"Punjabi",
],
[
None,
"ਸੂੂਬੇ ਦੇ ਕਈ ਜ਼ਿਲ੍ਹਿਆਂ ’ਚ ਬੁੱਧਵਾਰ ਸਵੇਰੇ ਸੰਘਣੀ ਧੁੰਦ ਛਾਈ ਰਹੀ ਤੇ ਤੇਜ਼ ਹਵਾਵਾਂ ਨੇ ਕਾਂਬਾ ਹੋਰ ਵਧਾ ਦਿੱਤਾ। ਸੱਤ ਸ਼ਹਿਰਾਂ ’ਚ ਦਿਨ ਦਾ ਤਾਪਮਾਨ ਦਸ ਡਿਗਰੀ ਸੈਲਸੀਅਸ ਦੇ ਆਸਪਾਸ ਰਿਹਾ। ਸੂਬੇ ’ਚ ਵੱਧ ਤੋਂ ਵੱਧ ਤਾਪਮਾਨ ’ਚ ਵੀ ਦਸ ਡਿਗਰੀ ਸੈਲਸੀਅਸ ਦੀ ਗਿਰਾਵਟ ਦਰਜ ਕੀਤੀ ਗਈ",
"Punjabi",
"English",
],
],
inputs=[file_uploader ,input_text, source_language, target_language],
outputs=[output_text, output_file],
fn=run_t2tt,
cache_examples=False,
api_name=False,
)
gr.on(
triggers=[input_text.submit, btn.click],
fn=run_t2tt,
inputs=[file_uploader, input_text, source_language, target_language],
outputs=[output_text, output_file],
api_name="t2tt",
)
#RAG
import utils
from langchain_mistralai import ChatMistralAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.vectorstores import Chroma
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_core.runnables import RunnablePassthrough
import chromadb.api
chromadb.api.client.SharedSystemClient.clear_system_cache()
os.environ['MISTRAL_API_KEY'] = 'XuyOObDE7trMbpAeI7OXYr3dnmoWy3L0'
class VectorData():
def __init__(self):
embedding_model_name = 'l3cube-pune/punjabi-sentence-similarity-sbert'
model_kwargs = {'device':'cpu',"trust_remote_code": True}
self.embeddings = HuggingFaceEmbeddings(
model_name=embedding_model_name,
model_kwargs=model_kwargs
)
self.vectorstore = Chroma(persist_directory="chroma_db", embedding_function=self.embeddings)
self.retriever = self.vectorstore.as_retriever()
self.ingested_files = []
self.prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"""Answer the question based on the given context. Dont give any ans if context is not valid to question. Always give the source of context:
{context}
""",
),
("human", "{question}"),
]
)
self.llm = ChatMistralAI(model="mistral-large-latest")
self.rag_chain = (
{"context": self.retriever, "question": RunnablePassthrough()}
| self.prompt
| self.llm
| StrOutputParser()
)
def add_file(self,file):
if file is not None:
self.ingested_files.append(file.name.split('/')[-1])
self.retriever, self.vectorstore = utils.add_doc(file,self.vectorstore)
self.rag_chain = (
{"context": self.retriever, "question": RunnablePassthrough()}
| self.prompt
| self.llm
| StrOutputParser()
)
return [[name] for name in self.ingested_files]
def delete_file_by_name(self,file_name):
if file_name in self.ingested_files:
self.retriever, self.vectorstore = utils.delete_doc(file_name,self.vectorstore)
self.ingested_files.remove(file_name)
return [[name] for name in self.ingested_files]
def delete_all_files(self):
self.ingested_files.clear()
self.retriever, self.vectorstore = utils.delete_all_doc(self.vectorstore)
return []
data_obj = VectorData()
# Function to handle question answering
def answer_question(question):
if question.strip():
return f'{data_obj.rag_chain.invoke(question)}'
return "Please enter a question."
with gr.Blocks() as rag_interface:
# Title and Description
gr.Markdown("# RAG Interface")
gr.Markdown("Manage documents and ask questions with a Retrieval-Augmented Generation (RAG) system.")
with gr.Row():
# Left Column: File Management
with gr.Column():
gr.Markdown("### File Management")
# File upload and ingest
file_input = gr.File(label="Upload File to Ingest")
add_file_button = gr.Button("Ingest File")
# Scrollable list for ingested files
ingested_files_box = gr.Dataframe(
headers=["Files"],
datatype="str",
row_count=4, # Limits the visible rows to create a scrollable view
interactive=False
)
# Radio buttons to choose delete option
delete_option = gr.Radio(choices=["Delete by File Name", "Delete All Files"], label="Delete Option")
file_name_input = gr.Textbox(label="Enter File Name to Delete", visible=False)
delete_button = gr.Button("Delete Selected")
# Show or hide file name input based on delete option selection
def toggle_file_input(option):
return gr.update(visible=(option == "Delete by File Name"))
delete_option.change(fn=toggle_file_input, inputs=delete_option, outputs=file_name_input)
# Handle file ingestion
add_file_button.click(
fn=data_obj.add_file,
inputs=file_input,
outputs=ingested_files_box
)
# Handle delete based on selected option
def delete_action(delete_option, file_name):
if delete_option == "Delete by File Name" and file_name:
return data_obj.delete_file_by_name(file_name)
elif delete_option == "Delete All Files":
return data_obj.delete_all_files()
else:
return [[name] for name in data_obj.ingested_files]
delete_button.click(
fn=delete_action,
inputs=[delete_option, file_name_input],
outputs=ingested_files_box
)
# Right Column: Question Answering
with gr.Column():
gr.Markdown("### Ask a Question")
# Question input
question_input = gr.Textbox(label="Enter your question")
# Get answer button and answer output
ask_button = gr.Button("Get Answer")
answer_output = gr.Textbox(label="Answer", interactive=False)
ask_button.click(fn=answer_question, inputs=question_input, outputs=answer_output)
with gr.Blocks() as demo:
with gr.Tabs():
with gr.Tab(label="OCR"):
demo_ocr.render()
with gr.Tab(label="Translate"):
demo_t2tt.render()
with gr.Tab(label="RAG"):
rag_interface.render()
if __name__ == "__main__":
demo.launch() |