File size: 1,959 Bytes
0bd4b9a
 
 
 
 
 
 
 
180bb88
0bd4b9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from langchain_huggingface import HuggingFaceEmbeddings
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
from langchain_community.vectorstores import Chroma
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
import torch

embedding_model_name = 'l3cube-pune/punjabi-sentence-similarity-sbert'

model_kwargs = {'device':'cuda' if torch.cuda.is_available() else 'cpu',"trust_remote_code": True}

embeddings = HuggingFaceEmbeddings(
    model_name=embedding_model_name,
    model_kwargs=model_kwargs
)

vectorstore = None



def read_file(data: str) -> Document:
    f = open(data,'r')
    content = f.read()
    f.close()
    doc = Document(page_content=content, metadata={"name": data.split('/')[-1]})
    return doc

text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=100)

def add_doc(data,vectorstore):
    doc = read_file(data)
    splits = text_splitter.split_documents([doc])
    vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
    retriever = vectorstore.as_retriever(search_kwargs={'k':1})
    return retriever, vectorstore

def delete_doc(delete_name,vectorstore):
    delete_doc_ids = []
    for idx,name in enumerate(vectorstore.get()['metadatas']):
        if name['name'] == delete_name:
            delete_doc_ids.append(vectorstore.get()['ids'][idx])
    for id in delete_doc_ids:        
        vectorstore.delete(ids = id)  
    # vectorstore.persist()
    retriever = vectorstore.as_retriever(search_kwargs={'k':1})
    return retriever, vectorstore

def delete_all_doc(vectorstore):
    delete_doc_ids = vectorstore.get()['ids']
    for id in delete_doc_ids:        
        vectorstore.delete(ids = id)  
    # vectorstore.persist()
    retriever = vectorstore.as_retriever(search_kwargs={'k':1})
    return retriever, vectorstore