File size: 4,758 Bytes
ed82520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c37edb
ed82520
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import gradio as gr
import torch
import dlib
import numpy as np
import PIL

# Only used to convert to gray, could do it differently and remove this big dependency
import cv2

from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler

from spiga.inference.config import ModelConfig
from spiga.inference.framework import SPIGAFramework

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

# Bounding boxes
face_detector = dlib.get_frontal_face_detector()

# Landmark extraction
spiga_extractor = SPIGAFramework(ModelConfig("300wpublic"))

uncanny_controlnet = ControlNetModel.from_pretrained(
    "multimodalart/uncannyfaces_25K", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1-base", controlnet=uncanny_controlnet, safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

# Generator seed,
generator = torch.manual_seed(0)

def get_bounding_box(image):
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    face = face_detector(gray)[0]
    bbox = [face.left(), face.top(), face.width(), face.height()]
    return bbox

def get_landmarks(image, bbox):
    features = spiga_extractor.inference(image, [bbox])
    return features['landmarks'][0]

def get_patch(landmarks, color='lime', closed=False):
    contour = landmarks
    ops = [Path.MOVETO] + [Path.LINETO]*(len(contour)-1)
    facecolor = (0, 0, 0, 0)      # Transparent fill color, if open
    if closed:
        contour.append(contour[0])
        ops.append(Path.CLOSEPOLY)
        facecolor = color
    path = Path(contour, ops)
    return patches.PathPatch(path, facecolor=facecolor, edgecolor=color, lw=4)

def conditioning_from_landmarks(landmarks, size=512):
    # Precisely control output image size
    dpi = 72
    fig, ax = plt.subplots(1, figsize=[size/dpi, size/dpi], tight_layout={'pad':0})
    fig.set_dpi(dpi)

    black = np.zeros((size, size, 3))
    ax.imshow(black)

    face_patch = get_patch(landmarks[0:17])
    l_eyebrow = get_patch(landmarks[17:22], color='yellow')
    r_eyebrow = get_patch(landmarks[22:27], color='yellow')
    nose_v = get_patch(landmarks[27:31], color='orange')
    nose_h = get_patch(landmarks[31:36], color='orange')
    l_eye = get_patch(landmarks[36:42], color='magenta', closed=True)
    r_eye = get_patch(landmarks[42:48], color='magenta', closed=True)
    outer_lips = get_patch(landmarks[48:60], color='cyan', closed=True)
    inner_lips = get_patch(landmarks[60:68], color='blue', closed=True)

    ax.add_patch(face_patch)
    ax.add_patch(l_eyebrow)
    ax.add_patch(r_eyebrow)
    ax.add_patch(nose_v)
    ax.add_patch(nose_h)
    ax.add_patch(l_eye)
    ax.add_patch(r_eye)
    ax.add_patch(outer_lips)
    ax.add_patch(inner_lips)

    plt.axis('off')
    
    fig.canvas.draw()
    buffer, (width, height) = fig.canvas.print_to_buffer()
    assert width == height
    assert width == size
    
    buffer = np.frombuffer(buffer, np.uint8).reshape((height, width, 4))
    buffer = buffer[:, :, 0:3]
    plt.close(fig)
    return PIL.Image.fromarray(buffer)

def get_conditioning(image):
    # Steps: convert to BGR and then:
    # - Retrieve bounding box using `dlib`
    # - Obtain landmarks using `spiga`
    # - Create conditioning image with custom `matplotlib` code
    # TODO: error if bbox is too small
    image.thumbnail((512, 512))
    image = np.array(image)
    image = image[:, :, ::-1]
    bbox = get_bounding_box(image)
    landmarks = get_landmarks(image, bbox)
    spiga_seg = conditioning_from_landmarks(landmarks)
    return spiga_seg 

def generate_images(image, prompt):
    conditioning = get_conditioning(image)
    output = pipe(
        prompt,
        conditioning,
        generator=generator,
        num_images_per_prompt=3,
        num_inference_steps=20,
    )
    return [conditioning] + output.images


gr.Interface(
    generate_images,
    inputs=[
        gr.Image(type="pil"),
        gr.Textbox(
            label="Enter your prompt",
            max_lines=1,
            placeholder="best quality, extremely detailed",
        ),
    ],
    outputs=gr.Gallery().style(grid=[2], height="auto"),
    title="Generate controlled outputs with ControlNet and Stable Diffusion. ",
    description="This Space uses a custom visualization based on SPIGA face landmarks for conditioning.",
    # "happy zombie" instead of "young woman" works great too :)
    examples=[["pedro-512.jpg", "Highly detailed photograph of young woman smiling, with palm trees in the background"]],
    allow_flagging=False,
).launch(enable_queue=True)