Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# Scene Text Recognition Model Hub | |
# Copyright 2022 Darwin Bautista | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from pathlib import Path | |
import hydra | |
from hydra.core.hydra_config import HydraConfig | |
from omegaconf import DictConfig, open_dict | |
import torch | |
from pytorch_lightning import Trainer | |
from pytorch_lightning.callbacks import ModelCheckpoint, StochasticWeightAveraging | |
from pytorch_lightning.loggers import TensorBoardLogger | |
from pytorch_lightning.strategies import DDPStrategy | |
from pytorch_lightning.utilities.model_summary import summarize | |
from strhub.data.module import SceneTextDataModule | |
from strhub.models.base import BaseSystem | |
from strhub.models.utils import get_pretrained_weights | |
# Copied from OneCycleLR | |
def _annealing_cos(start, end, pct): | |
'Cosine anneal from `start` to `end` as pct goes from 0.0 to 1.0.' | |
cos_out = math.cos(math.pi * pct) + 1 | |
return end + (start - end) / 2.0 * cos_out | |
def get_swa_lr_factor(warmup_pct, swa_epoch_start, div_factor=25, final_div_factor=1e4) -> float: | |
"""Get the SWA LR factor for the given `swa_epoch_start`. Assumes OneCycleLR Scheduler.""" | |
total_steps = 1000 # Can be anything. We use 1000 for convenience. | |
start_step = int(total_steps * warmup_pct) - 1 | |
end_step = total_steps - 1 | |
step_num = int(total_steps * swa_epoch_start) - 1 | |
pct = (step_num - start_step) / (end_step - start_step) | |
return _annealing_cos(1, 1 / (div_factor * final_div_factor), pct) | |
def main(config: DictConfig): | |
trainer_strategy = 'auto' | |
with open_dict(config): | |
# Resolve absolute path to data.root_dir | |
config.data.root_dir = hydra.utils.to_absolute_path(config.data.root_dir) | |
# Special handling for GPU-affected config | |
gpu = config.trainer.get('accelerator') == 'gpu' | |
devices = config.trainer.get('devices', 0) | |
if gpu: | |
# Use mixed-precision training | |
config.trainer.precision = 'bf16-mixed' if torch.get_autocast_gpu_dtype() is torch.bfloat16 else '16-mixed' | |
if gpu and devices > 1: | |
# Use DDP with optimizations | |
trainer_strategy = DDPStrategy(find_unused_parameters=False, gradient_as_bucket_view=True) | |
# Scale steps-based config | |
config.trainer.val_check_interval //= devices | |
if config.trainer.get('max_steps', -1) > 0: | |
config.trainer.max_steps //= devices | |
# Special handling for PARseq | |
if config.model.get('perm_mirrored', False): | |
assert config.model.perm_num % 2 == 0, 'perm_num should be even if perm_mirrored = True' | |
model: BaseSystem = hydra.utils.instantiate(config.model) | |
# If specified, use pretrained weights to initialize the model | |
if config.pretrained is not None: | |
m = model.model if config.model._target_.endswith('PARSeq') else model | |
m.load_state_dict(get_pretrained_weights(config.pretrained)) | |
print(summarize(model, max_depth=2)) | |
datamodule: SceneTextDataModule = hydra.utils.instantiate(config.data) | |
checkpoint = ModelCheckpoint( | |
monitor='val_accuracy', | |
mode='max', | |
save_top_k=3, | |
save_last=True, | |
filename='{epoch}-{step}-{val_accuracy:.4f}-{val_NED:.4f}', | |
) | |
swa_epoch_start = 0.75 | |
swa_lr = config.model.lr * get_swa_lr_factor(config.model.warmup_pct, swa_epoch_start) | |
swa = StochasticWeightAveraging(swa_lr, swa_epoch_start) | |
cwd = ( | |
HydraConfig.get().runtime.output_dir | |
if config.ckpt_path is None | |
else str(Path(config.ckpt_path).parents[1].absolute()) | |
) | |
trainer: Trainer = hydra.utils.instantiate( | |
config.trainer, | |
logger=TensorBoardLogger(cwd, '', '.'), | |
strategy=trainer_strategy, | |
enable_model_summary=False, | |
callbacks=[checkpoint, swa], | |
) | |
trainer.fit(model, datamodule=datamodule, ckpt_path=config.ckpt_path) | |
if __name__ == '__main__': | |
main() | |