Spaces:
Runtime error
Runtime error
from strhub.models.utils import create_model | |
dependencies = ['torch', 'pytorch_lightning', 'timm'] | |
def parseq_tiny(pretrained: bool = False, decode_ar: bool = True, refine_iters: int = 1, **kwargs): | |
""" | |
PARSeq tiny model (img_size=128x32, patch_size=8x4, d_model=192) | |
@param pretrained: (bool) Use pretrained weights | |
@param decode_ar: (bool) use AR decoding | |
@param refine_iters: (int) number of refinement iterations to use | |
""" | |
return create_model('parseq-tiny', pretrained, decode_ar=decode_ar, refine_iters=refine_iters, **kwargs) | |
def parseq(pretrained: bool = False, decode_ar: bool = True, refine_iters: int = 1, **kwargs): | |
""" | |
PARSeq base model (img_size=128x32, patch_size=8x4, d_model=384) | |
@param pretrained: (bool) Use pretrained weights | |
@param decode_ar: (bool) use AR decoding | |
@param refine_iters: (int) number of refinement iterations to use | |
""" | |
return create_model('parseq', pretrained, decode_ar=decode_ar, refine_iters=refine_iters, **kwargs) | |
def parseq_patch16_224(pretrained: bool = False, decode_ar: bool = True, refine_iters: int = 1, **kwargs): | |
""" | |
PARSeq base model (img_size=224x224, patch_size=16x16, d_model=384) | |
@param pretrained: (bool) Use pretrained weights | |
@param decode_ar: (bool) use AR decoding | |
@param refine_iters: (int) number of refinement iterations to use | |
""" | |
return create_model('parseq-patch16-224', pretrained, decode_ar=decode_ar, refine_iters=refine_iters, **kwargs) | |
def abinet(pretrained: bool = False, iter_size: int = 3, **kwargs): | |
""" | |
ABINet model (img_size=128x32) | |
@param pretrained: (bool) Use pretrained weights | |
@param iter_size: (int) number of refinement iterations to use | |
""" | |
return create_model('abinet', pretrained, iter_size=iter_size, **kwargs) | |
def trba(pretrained: bool = False, **kwargs): | |
""" | |
TRBA model (img_size=128x32) | |
@param pretrained: (bool) Use pretrained weights | |
""" | |
return create_model('trba', pretrained, **kwargs) | |
def vitstr(pretrained: bool = False, **kwargs): | |
""" | |
ViTSTR small model (img_size=128x32, patch_size=8x4, d_model=384) | |
@param pretrained: (bool) Use pretrained weights | |
""" | |
return create_model('vitstr', pretrained, **kwargs) | |
def crnn(pretrained: bool = False, **kwargs): | |
""" | |
CRNN model (img_size=128x32) | |
@param pretrained: (bool) Use pretrained weights | |
""" | |
return create_model('crnn', pretrained, **kwargs) | |