pavlyhalim
commited on
Commit
·
1d03764
1
Parent(s):
1a27bf2
Add application and model files
Browse files- app.py +245 -0
- model.joblib +3 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import joblib
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
from sklearn.base import BaseEstimator, ClassifierMixin
|
7 |
+
from sklearn.preprocessing import RobustScaler, LabelEncoder
|
8 |
+
from sklearn.feature_selection import SelectFromModel
|
9 |
+
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
|
10 |
+
import xgboost as xgb
|
11 |
+
from sklearn.linear_model import LogisticRegression
|
12 |
+
import time
|
13 |
+
from datetime import datetime
|
14 |
+
|
15 |
+
class OptimizedStackedClassifier(BaseEstimator, ClassifierMixin):
|
16 |
+
def __init__(self):
|
17 |
+
self.scaler = RobustScaler()
|
18 |
+
self.label_encoder = LabelEncoder()
|
19 |
+
self.feature_selector = None
|
20 |
+
self.base_models = None
|
21 |
+
self.meta_model = None
|
22 |
+
self.selected_features = None
|
23 |
+
self.start_time = time.time()
|
24 |
+
|
25 |
+
def predict(self, X):
|
26 |
+
"""Make predictions using optimized pipeline"""
|
27 |
+
# Scale and select features
|
28 |
+
X_scaled = pd.DataFrame(
|
29 |
+
self.scaler.transform(X),
|
30 |
+
columns=X.columns
|
31 |
+
)
|
32 |
+
X_selected = X_scaled[self.selected_features]
|
33 |
+
|
34 |
+
# Generate meta-features
|
35 |
+
meta_features = np.zeros((X_selected.shape[0], len(self.base_models) * 6))
|
36 |
+
for i, (name, model) in enumerate(self.base_models):
|
37 |
+
predictions = model.predict_proba(X_selected)
|
38 |
+
meta_features[:, i*6:(i+1)*6] = predictions
|
39 |
+
|
40 |
+
# Make final predictions
|
41 |
+
predictions = self.meta_model.predict(meta_features)
|
42 |
+
return self.label_encoder.inverse_transform(predictions)
|
43 |
+
|
44 |
+
def predict_proba(self, X):
|
45 |
+
"""Get prediction probabilities"""
|
46 |
+
# Scale and select features
|
47 |
+
X_scaled = pd.DataFrame(
|
48 |
+
self.scaler.transform(X),
|
49 |
+
columns=X.columns
|
50 |
+
)
|
51 |
+
X_selected = X_scaled[self.selected_features]
|
52 |
+
|
53 |
+
# Generate meta-features
|
54 |
+
meta_features = np.zeros((X_selected.shape[0], len(self.base_models) * 6))
|
55 |
+
for i, (name, model) in enumerate(self.base_models):
|
56 |
+
predictions = model.predict_proba(X_selected)
|
57 |
+
meta_features[:, i*6:(i+1)*6] = predictions
|
58 |
+
|
59 |
+
return self.meta_model.predict_proba(meta_features)
|
60 |
+
|
61 |
+
def load_model(model_path):
|
62 |
+
"""Load the saved model"""
|
63 |
+
try:
|
64 |
+
return joblib.load(model_path)
|
65 |
+
except Exception as e:
|
66 |
+
st.error(f"Error loading model: {str(e)}")
|
67 |
+
return None
|
68 |
+
|
69 |
+
def create_features(input_data):
|
70 |
+
"""Create features matching the model's exact feature names"""
|
71 |
+
features = {
|
72 |
+
'chars_original': input_data['chars_original'],
|
73 |
+
'chars_tokenized': input_data['chars_tokenized'],
|
74 |
+
'num_words': input_data['num_words'],
|
75 |
+
'num_tokens': input_data['num_tokens'],
|
76 |
+
'unique_tokens': input_data['unique_tokens'],
|
77 |
+
'type_token_ratio': input_data['type_token_ratio'],
|
78 |
+
'fertility': input_data['fertility'],
|
79 |
+
'token_std': input_data['token_std'],
|
80 |
+
'avg_token_len': input_data['avg_token_len']
|
81 |
+
}
|
82 |
+
|
83 |
+
# Add derived features
|
84 |
+
eps = 1e-10
|
85 |
+
features['chars_per_word'] = features['chars_original'] / (features['num_words'] + eps)
|
86 |
+
features['chars_per_token'] = features['chars_tokenized'] / (features['num_tokens'] + eps)
|
87 |
+
features['tokens_per_word'] = features['num_tokens'] / (features['num_words'] + eps)
|
88 |
+
features['token_complexity'] = features['token_std'] * features['avg_token_len']
|
89 |
+
features['lexical_density'] = features['unique_tokens'] / (features['num_words'] + eps)
|
90 |
+
features['log_chars'] = np.log1p(features['chars_original'])
|
91 |
+
features['complexity_score'] = (
|
92 |
+
features['token_complexity'] *
|
93 |
+
features['lexical_density'] *
|
94 |
+
features['type_token_ratio']
|
95 |
+
)
|
96 |
+
|
97 |
+
return pd.DataFrame([features])
|
98 |
+
|
99 |
+
def plot_probabilities(probabilities):
|
100 |
+
"""Create a bar plot of prediction probabilities"""
|
101 |
+
fig = go.Figure(data=[
|
102 |
+
go.Bar(
|
103 |
+
x=[f'Level {i+1}' for i in range(len(probabilities))],
|
104 |
+
y=probabilities,
|
105 |
+
text=np.round(probabilities, 3),
|
106 |
+
textposition='auto'
|
107 |
+
)
|
108 |
+
])
|
109 |
+
fig.update_layout(
|
110 |
+
title='Probability Distribution Across Readability Levels',
|
111 |
+
xaxis_title='Readability Level',
|
112 |
+
yaxis_title='Probability',
|
113 |
+
yaxis_range=[0, 1],
|
114 |
+
height=400
|
115 |
+
)
|
116 |
+
return fig
|
117 |
+
|
118 |
+
def plot_feature_values(features_df):
|
119 |
+
"""Create a bar plot of feature values"""
|
120 |
+
fig = go.Figure(data=[
|
121 |
+
go.Bar(
|
122 |
+
x=features_df.columns,
|
123 |
+
y=features_df.values[0],
|
124 |
+
text=np.round(features_df.values[0], 2),
|
125 |
+
textposition='auto'
|
126 |
+
)
|
127 |
+
])
|
128 |
+
fig.update_layout(
|
129 |
+
title='Feature Values',
|
130 |
+
xaxis_title='Features',
|
131 |
+
yaxis_title='Value',
|
132 |
+
xaxis_tickangle=-45,
|
133 |
+
height=500
|
134 |
+
)
|
135 |
+
return fig
|
136 |
+
|
137 |
+
def main():
|
138 |
+
st.set_page_config(page_title="Text Readability Classifier", layout="wide")
|
139 |
+
|
140 |
+
st.title("Text Readability Classifier")
|
141 |
+
st.write("This app predicts the readability level based on text characteristics.")
|
142 |
+
|
143 |
+
# Load the model
|
144 |
+
model_path = "/Users/pavly/Downloads/saved_models/stacked_classifier_20241124_213512.joblib"
|
145 |
+
model = load_model(model_path)
|
146 |
+
|
147 |
+
if model is None:
|
148 |
+
st.error("Could not load the model. Please check if the model file exists.")
|
149 |
+
return
|
150 |
+
|
151 |
+
# Create two columns for layout
|
152 |
+
col1, col2 = st.columns([2, 1])
|
153 |
+
|
154 |
+
with col1:
|
155 |
+
# Input form for text characteristics
|
156 |
+
st.subheader("Enter Text Characteristics")
|
157 |
+
|
158 |
+
# Basic features input
|
159 |
+
input_data = {}
|
160 |
+
input_data['chars_original'] = st.number_input('Number of Characters (Original)', value=0)
|
161 |
+
input_data['chars_tokenized'] = st.number_input('Number of Characters (Tokenized)', value=0)
|
162 |
+
input_data['num_words'] = st.number_input('Number of Words', value=0)
|
163 |
+
input_data['num_tokens'] = st.number_input('Number of Tokens', value=0)
|
164 |
+
input_data['unique_tokens'] = st.number_input('Number of Unique Tokens', value=0)
|
165 |
+
input_data['type_token_ratio'] = st.number_input('Type-Token Ratio', value=0.0, min_value=0.0, max_value=1.0)
|
166 |
+
input_data['fertility'] = st.number_input('Fertility', value=0.0)
|
167 |
+
input_data['token_std'] = st.number_input('Token Standard Deviation', value=0.0)
|
168 |
+
input_data['avg_token_len'] = st.number_input('Average Token Length', value=0.0)
|
169 |
+
|
170 |
+
analyze_button = st.button("Analyze", type="primary")
|
171 |
+
|
172 |
+
if analyze_button:
|
173 |
+
with st.spinner("Analyzing..."):
|
174 |
+
try:
|
175 |
+
# Create features dataframe with all required features
|
176 |
+
features_df = create_features(input_data)
|
177 |
+
|
178 |
+
# Make prediction
|
179 |
+
prediction = model.predict(features_df)[0]
|
180 |
+
probabilities = model.predict_proba(features_df)[0]
|
181 |
+
|
182 |
+
# Display results
|
183 |
+
st.subheader("Analysis Results")
|
184 |
+
|
185 |
+
# Create metrics row
|
186 |
+
metrics_cols = st.columns(2)
|
187 |
+
with metrics_cols[0]:
|
188 |
+
st.metric("Readability Level", f"Level {prediction}")
|
189 |
+
with metrics_cols[1]:
|
190 |
+
highest_prob = max(probabilities)
|
191 |
+
st.metric("Confidence", f"{highest_prob:.2%}")
|
192 |
+
|
193 |
+
# Show probability distribution
|
194 |
+
st.plotly_chart(plot_probabilities(probabilities),
|
195 |
+
use_container_width=True)
|
196 |
+
|
197 |
+
# Show all feature values including derived features
|
198 |
+
st.subheader("All Features (Including Derived)")
|
199 |
+
st.plotly_chart(plot_feature_values(features_df),
|
200 |
+
use_container_width=True)
|
201 |
+
|
202 |
+
except Exception as e:
|
203 |
+
st.error(f"Error during analysis: {str(e)}")
|
204 |
+
|
205 |
+
with col2:
|
206 |
+
# Information sidebar
|
207 |
+
with st.container():
|
208 |
+
st.subheader("About Readability Levels")
|
209 |
+
st.write("""
|
210 |
+
The model predicts readability on a scale from 1 to 6:
|
211 |
+
- **Level 1**: Very Easy
|
212 |
+
- **Level 2**: Easy
|
213 |
+
- **Level 3**: Moderately Easy
|
214 |
+
- **Level 4**: Moderate
|
215 |
+
- **Level 5**: Moderately Difficult
|
216 |
+
- **Level 6**: Difficult
|
217 |
+
""")
|
218 |
+
|
219 |
+
st.subheader("Feature Explanations")
|
220 |
+
st.write("""
|
221 |
+
**Basic Features:**
|
222 |
+
- Character counts (original and tokenized)
|
223 |
+
- Word and token counts
|
224 |
+
- Type-token ratio (vocabulary diversity)
|
225 |
+
- Token length statistics
|
226 |
+
|
227 |
+
**Derived Features:**
|
228 |
+
- Characters per word/token
|
229 |
+
- Token complexity
|
230 |
+
- Lexical density
|
231 |
+
- Overall complexity score
|
232 |
+
""")
|
233 |
+
|
234 |
+
st.subheader("Model Performance")
|
235 |
+
st.write("""
|
236 |
+
This model achieves:
|
237 |
+
- **Accuracy**: 73.86%
|
238 |
+
- **Macro Avg F1**: 0.75
|
239 |
+
- **Weighted Avg F1**: 0.74
|
240 |
+
|
241 |
+
*Note: Results should be used as guidance rather than absolute measures.*
|
242 |
+
""")
|
243 |
+
|
244 |
+
if __name__ == "__main__":
|
245 |
+
main()
|
model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5160f5caf5965a9cc267b61c8ae47b629a7f178172ad80daf1c16201a03b1a93
|
3 |
+
size 1069137279
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
numpy
|
3 |
+
joblib
|
4 |
+
plotly
|
5 |
+
scikit-learn
|
6 |
+
xgboost
|