Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -26,8 +26,15 @@ model = HfApiModel("mistralai/Mixtral-8x7B-Instruct-v0.1", token=hf_token)
|
|
26 |
|
27 |
def format_analysis_report(raw_output, visuals):
|
28 |
try:
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
report = f"""
|
32 |
<div style="font-family: Arial, sans-serif; padding: 20px; color: #333;">
|
33 |
<h1 style="color: #2B547E; border-bottom: 2px solid #2B547E; padding-bottom: 10px;">📊 Data Analysis Report</h1>
|
@@ -43,7 +50,7 @@ def format_analysis_report(raw_output, visuals):
|
|
43 |
"""
|
44 |
return report, visuals
|
45 |
except Exception as e:
|
46 |
-
print(f"Error
|
47 |
return str(raw_output), visuals
|
48 |
|
49 |
def format_observations(observations):
|
@@ -91,8 +98,22 @@ def analyze_data(csv_file, additional_notes=""):
|
|
91 |
1. Basic statistics and data quality checks
|
92 |
2. 3 insightful analytical questions about relationships in the data
|
93 |
3. Visualization of key patterns and correlations
|
94 |
-
4. Actionable real-world insights derived from findings
|
95 |
-
Generate publication-quality visualizations and save to './figures/'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
""", additional_args={"additional_notes": additional_notes, "source_file": csv_file})
|
97 |
|
98 |
execution_time = time.time() - start_time
|
@@ -154,7 +175,7 @@ def tune_hyperparameters(csv_file, n_trials: int):
|
|
154 |
shap_fig_path = "./figures/shap_summary.png"
|
155 |
plt.savefig(shap_fig_path)
|
156 |
wandb.log({"shap_summary": wandb.Image(shap_fig_path)})
|
157 |
-
plt.clf()
|
158 |
|
159 |
lime_explainer = lime.lime_tabular.LimeTabularExplainer(X_train.values, feature_names=X_train.columns, class_names=['target'], mode='classification')
|
160 |
lime_explanation = lime_explainer.explain_instance(X_test.iloc[0].values, model.predict_proba)
|
@@ -162,7 +183,7 @@ def tune_hyperparameters(csv_file, n_trials: int):
|
|
162 |
lime_fig_path = "./figures/lime_explanation.png"
|
163 |
lime_fig.savefig(lime_fig_path)
|
164 |
wandb.log({"lime_explanation": wandb.Image(lime_fig_path)})
|
165 |
-
plt.clf()
|
166 |
|
167 |
return f"Best Hyperparameters: {best_params}<br>Accuracy: {accuracy}<br>Precision: {precision}<br>Recall: {recall}<br>F1-score: {f1}"
|
168 |
|
|
|
26 |
|
27 |
def format_analysis_report(raw_output, visuals):
|
28 |
try:
|
29 |
+
if isinstance(raw_output, dict):
|
30 |
+
analysis_dict = raw_output
|
31 |
+
else:
|
32 |
+
try:
|
33 |
+
analysis_dict = ast.literal_eval(str(raw_output))
|
34 |
+
except (SyntaxError, ValueError) as e:
|
35 |
+
print(f"Error parsing CodeAgent output: {e}")
|
36 |
+
return str(raw_output), visuals # Return raw output as string
|
37 |
+
|
38 |
report = f"""
|
39 |
<div style="font-family: Arial, sans-serif; padding: 20px; color: #333;">
|
40 |
<h1 style="color: #2B547E; border-bottom: 2px solid #2B547E; padding-bottom: 10px;">📊 Data Analysis Report</h1>
|
|
|
50 |
"""
|
51 |
return report, visuals
|
52 |
except Exception as e:
|
53 |
+
print(f"Error in format_analysis_report: {e}")
|
54 |
return str(raw_output), visuals
|
55 |
|
56 |
def format_observations(observations):
|
|
|
98 |
1. Basic statistics and data quality checks
|
99 |
2. 3 insightful analytical questions about relationships in the data
|
100 |
3. Visualization of key patterns and correlations
|
101 |
+
4. Actionable real-world insights derived from findings.
|
102 |
+
Generate publication-quality visualizations and save to './figures/'.
|
103 |
+
Return the analysis results as a python dictionary that can be parsed by ast.literal_eval().
|
104 |
+
The dictionary should have the following structure:
|
105 |
+
{
|
106 |
+
'observations': {
|
107 |
+
'observation_1_key': 'observation_1_value',
|
108 |
+
'observation_2_key': 'observation_2_value',
|
109 |
+
...
|
110 |
+
},
|
111 |
+
'insights': {
|
112 |
+
'insight_1_key': 'insight_1_value',
|
113 |
+
'insight_2_key': 'insight_2_value',
|
114 |
+
...
|
115 |
+
}
|
116 |
+
}
|
117 |
""", additional_args={"additional_notes": additional_notes, "source_file": csv_file})
|
118 |
|
119 |
execution_time = time.time() - start_time
|
|
|
175 |
shap_fig_path = "./figures/shap_summary.png"
|
176 |
plt.savefig(shap_fig_path)
|
177 |
wandb.log({"shap_summary": wandb.Image(shap_fig_path)})
|
178 |
+
plt.clf()
|
179 |
|
180 |
lime_explainer = lime.lime_tabular.LimeTabularExplainer(X_train.values, feature_names=X_train.columns, class_names=['target'], mode='classification')
|
181 |
lime_explanation = lime_explainer.explain_instance(X_test.iloc[0].values, model.predict_proba)
|
|
|
183 |
lime_fig_path = "./figures/lime_explanation.png"
|
184 |
lime_fig.savefig(lime_fig_path)
|
185 |
wandb.log({"lime_explanation": wandb.Image(lime_fig_path)})
|
186 |
+
plt.clf()
|
187 |
|
188 |
return f"Best Hyperparameters: {best_params}<br>Accuracy: {accuracy}<br>Precision: {precision}<br>Recall: {recall}<br>F1-score: {f1}"
|
189 |
|